cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A121868 Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives B sequence (cf. A121867).

Original entry on oeis.org

0, -1, -1, 0, 5, 23, 74, 161, -57, -3466, -27361, -155397, -687688, -1888525, 4974059, 134695952, 1400820897, 11055147275, 70658948426, 327448854237, 223871274083, -19116044475298, -314203665206509, -3562429698724513, -33024521386113840, -250403183401213513
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Comments

Stirling transform of (I^(n+1)+(-I)^(n+1))/2 = (0,-1,0,1,..) repeated.

Examples

			From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as a linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
(End)
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^(k+1)* Stirling2(n,2*k+1)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    [(&+[(-1)^(k+1)*StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    # Maple code for A024430, A024429, A121867, A121868.
    M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
    for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
    # Code based on Stirling transform:
    stirtr:= proc(p) proc(n) option remember;
                add(p(k) *Stirling2(n, k), k=0..n) end
             end:
    a:= stirtr(n-> (I^(n+1) + (-I)^(n+1))/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 29 2011
  • Mathematica
    stirtr[p_] := Module[{f}, f[n_] := f[n] = Sum[p[k]*StirlingS2[n, k], {k, 0, n}]; f]; a = stirtr[(I^(#+1)+(-I)^(#+1))/2&]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
    Table[Im[BellB[n, -I]], {n, 0, 25}] (* Vladimir Reshetnikov, Oct 22 2015 *)
  • PARI
    a(n) = sum(k=0,n\2, (-1)^(k+1)*stirling(n,2*k+1,2));
    vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
    
  • Sage
    [sum((-1)^(k+1)*stirling_number2(n,2*k+1) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
    

Formula

From Peter Bala, Aug 28 2008: (Start)
This sequence and its companion A121867 are related to the pair of constants cos(1) + sin(1) and cos(1) - sin(1) and may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587.
Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2) *n^k/n! for k = 0,1,2,... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1). Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = - E_2(0) + E_2(1), E_2(3) = -3*E_2(0) and E_2(4) = - 6*E_2(0) - 5*E_2(1). More examples are given below. The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1).
For similar results see A143628. The decimal expansions of E_2(0) and E_2(1) are given in A143623 and A143624 respectively. (End)
From Vladimir Kruchinin, Jan 26 2011: (Start)
E.g.f.: A(x) = -sin(exp(x)-1).
a(n) = Sum_{k = 0..floor(n/2)} Stirling2(n,2*k+1)*(-1)^(k+1). (End)

A143817 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence C(n).

Original entry on oeis.org

0, 0, 1, 3, 7, 16, 46, 203, 1178, 7242, 43786, 259634, 1540540, 9414639, 61061613, 428890726, 3266930298, 26581123093, 226393705465, 1986997358251, 17827284972818, 163278469610570, 1531115974317975, 14771302315885372, 147267150734530892, 1521022490460243316
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Compare with A024429 and A024430.
This sequence and its companion sequences A(n) = A143815 and B(n) = A143816 may be viewed as generalizations of the Bell numbers A000110. Define R(n) = Sum_{k >= 0} (3k)^n/(3k)! for n = 0,1,2,.... Then the real number R(n) is an integral linear combination of R(0) = 1 + 1/3! + 1/6! + ...., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... . Some examples are given below. The precise result is R(n) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2)-R(1)). This generalizes the Dobinski relation for the Bell numbers: Sum_{k >= 0} k^n/k! = A000110(n)*exp(1). See A143815 for more details. Compare with A143628 through A143631. The decimal expansions of R(0), R(2) - R(1) and R(1) may be found in A143819, A143820 and A143821 respectively.

Examples

			R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
		

Crossrefs

Programs

  • Maple
    # (1)
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    end do:
    A143817:=[seq(c[n], n=0..M)];
    # (2)
    seq(add(Stirling2(n,3*i+2),i = 0..floor((n-2)/3)), n = 0..24);
    # third Maple program:
    b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
          add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    a[n_] := Sum[ StirlingS2[n, 3*i+2], {i, 0, (n-2)/3}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w*Bell_poly(n, w)+w^2*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022

Formula

a(n) = Sum_{k = 0..floor((n-2)/3)} Stirling2(n,3k+2).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w*exp(w*x) + w^2*exp(w^2*x))/3 = x^2/2! + x^5/5! + x^8/8! + ... . Then the e.g.f. for the sequence is F(exp(x)-1).
A143815(n) + A143816(n) + A143817(n) = Bell(n).
a(n) = ( Bell_n(1) + w * Bell_n(w) + w^2 * Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A340605 Heinz numbers of integer partitions of even positive rank.

Original entry on oeis.org

5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      5: (3)         57: (8,2)       97: (25)
     11: (5)         58: (10,1)      99: (5,2,2)
     14: (4,1)       59: (17)       102: (7,2,1)
     17: (7)         65: (6,3)      103: (27)
     21: (4,2)       66: (5,2,1)    104: (6,1,1,1)
     23: (9)         67: (19)       106: (16,1)
     26: (6,1)       68: (7,1,1)    109: (29)
     31: (11)        73: (21)       110: (5,3,1)
     35: (4,3)       74: (12,1)     111: (12,2)
     38: (8,1)       83: (23)       122: (18,1)
     39: (6,2)       86: (14,1)     124: (11,1,1)
     41: (13)        87: (10,2)     127: (31)
     44: (5,1,1)     91: (6,4)      129: (14,2)
     47: (15)        92: (9,1,1)    133: (8,4)
     49: (4,4)       95: (8,3)      137: (33)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
Allowing any positive rank gives A064173 (A340787).
The odd version is counted by A101707 (A340604).
These partitions are counted by A101708.
The not necessarily positive case is counted by A340601 (A340602).
A001222 counts prime indices.
A061395 gives maximum prime index.
A072233 counts partitions by sum and length.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A064173 counts partitions of negative rank (A340788).
A064174 counts partitions of nonnegative rank (A324562).
A064174 (also) counts partitions of nonpositive rank (A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340692 counts partitions of odd rank (A340603).
- Even -
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[100],EvenQ[rk[#]]&&rk[#]>0&]

Formula

A061395(a(n)) - A001222(a(n)) is even and positive.

A143816 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence B(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 11, 66, 352, 1730, 8233, 39987, 209793, 1240603, 8287281, 60473869, 463764484, 3647602117, 29165686541, 237499318823, 1984374301872, 17167462137733, 154885317758354, 1461156867801556, 14381004640256202, 146852743814531169, 1546054541191452967
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Compare with A024429 and A024430.
This sequence and its companion sequences A(n) = A143815 and C(n) = A143817 may be viewed as generalizations of the Bell numbers A000110. Define R(n) = Sum_{k >= 0} (3k)^n/(3k)! for n = 0,1,2,.... Then the real number R(n) is an integral linear combination of R(0) = 1 + 1/3! + 1/6! + ...., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + .... Some examples are given below. The precise result is R(n) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2)-R(1)). This generalizes the Dobinski relation for the Bell numbers: Sum_{k >= 0} k^n/k! = A000110(n)*exp(1). See A143815 for more details. Compare with A143628 through A143631. The decimal expansions of R(0), R(2) - R(1) and R(1) may be found in A143819, A143820 and A143821 respectively.

Examples

			R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
		

Crossrefs

Programs

  • Maple
    # (1)
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    end do:
    A143816:=[seq(b[n], n=0..M)];
    # (2)
    seq(add(Stirling2(n,3*i+1),i = 0..floor((n-1)/3)), n = 0..24);
    # third Maple program:
    b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
          add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143816 = Table[ b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w^2*Bell_poly(n, w)+w*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022

Formula

a(n) = Sum_{k = 0..floor((n-1)/3)} Stirling2(n,3k+1).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w^2*exp(w*x) + w*exp(w^2*x))/3 = x + x^4/4! + x^7/7! + ... . Then the e.g.f. for the sequence is F(exp(x)-1). A143815(n) + A143816(n) + A143817(n) = Bell(n).
a(n) = ( Bell_n(1) + w^2 * Bell_n(w) + w * Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A143818 Let R(n) = sum {k = 0..inf} (3k)^n/(3k)! for n = 0,1,2,... . Then the real number R(n) is an integral linear combination of R(0), R(1) and R(2). This sequence gives the coefficients of R(1).

Original entry on oeis.org

0, 1, 0, -2, -5, -5, 20, 149, 552, 991, -3799, -49841, -299937, -1127358, -587744, 34873758, 380671819, 2584563448, 11105613358, -2623056379, -659822835085, -8393151852216, -69959106516419, -390297675629170, -414406919999723
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

The coefficients of R(0) and R(2) are listed in A143815 and A143817 respectively.

Examples

			R(n) as a linear combination of R(i),
i = 0..2.
====================================
..R(n)..|.....R(0)....R(1)....R(2)..
====================================
..R(3)..|.......1......-2.......3...
..R(4)..|.......6......-5.......7...
..R(5)..|......25......-5......16...
..R(6)..|......91......20......46...
..R(7)..|.....322.....149.....203...
..R(8)..|....1232.....552....1178...
..R(9)..|....5672.....991....7242...
..R(10).|...32202...-3799...43786...
...
		

Crossrefs

Programs

  • Maple
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    b[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    end do:
    A143818:=[seq(b[n]-c[n], n=0..M)];
  • Mathematica
    m = 24; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}] ]; A143818 = Table[c[n] - b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)

Formula

a(n) = A143816(n) - A143817(n). a(n) = sum {k = 0..floor((n-1)/3)} (Stirling2(n,3k+1) - Stirling2(n,3k+2)). Let R(n) = sum {k = 0..inf} (3k)^n/(3k)! for n = 0,1,2,... . Then R(n) = A143815(n)*R(0) + A143818(n)*R(1) + A143817(n)*R(2). Some examples are given below. This generalizes the Dobinski relation for the Bell numbers: sum {k = 0..inf} k^n/k! = A000110(n)*exp(1). See A143815 for more details. Compare with A024429, A024430 and A143628--A143631

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A357681 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * (exp(x) - 1) ).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 3, 6, 8, 0, 1, 0, 4, 9, 18, 25, 0, 1, 0, 5, 12, 30, 70, 97, 0, 1, 0, 6, 15, 44, 135, 330, 434, 0, 1, 0, 7, 18, 60, 220, 705, 1694, 2095, 0, 1, 0, 8, 21, 78, 325, 1228, 3906, 9202, 10707, 0, 1, 0, 9, 24, 98, 450, 1905, 7196, 22953, 53334, 58194, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2022

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1, ...
  0,  0,  0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5, ...
  0,  3,  6,   9,  12,  15, ...
  0,  8, 18,  30,  44,  60, ...
  0, 25, 70, 135, 220, 325, ...
		

Crossrefs

Columns k=0-4 give: A000007, A024430, A264036, A357615, A065143.
Column k=9 gives A357667.
Main diagonal gives A357682.
Cf. A292860.

Programs

  • PARI
    T(n, k) = sum(j=0, n\2, k^j*stirling(n, 2*j, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    T(n, k) = round((Bell_poly(n, sqrt(k))+Bell_poly(n, -sqrt(k))))/2;

Formula

T(n,k) = Sum_{j=0..floor(n/2)} k^j * Stirling2(n,2*j).
T(n,k) = ( Bell_n(sqrt(k)) + Bell_n(-sqrt(k)) )/2, where Bell_n(x) is n-th Bell polynomial.

A365528 a(n) = Sum_{k=0..floor(n/5)} Stirling2(n,5*k).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42526, 246785, 1381105, 7547826, 40827787, 223429571, 1289945660, 8411093621, 66070626548, 624900235273, 6667243384356, 74991482322466, 854627237256694, 9698297591786441, 108934902927646609
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[StirlingS2[n, 5*k], {k, 0, Floor[n/5]}]; Array[a, 25, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, stirling(n, 5*k, 2));

Formula

Let A(0)=1, B(0)=0, C(0)=0, D(0)=0 and E(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k), E(n+1) = Sum_{k=0..n} binomial(n,k)*D(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*E(k). a(n) = A(n), A365529(n) = B(n), A365530(n) = C(n), A365531(n) = D(n) and A365532(n) = E(n).
G.f.: Sum_{k>=0} x^(5*k) / Product_{j=1..5*k} (1-j*x).
a(n) ~ n^n / (5 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025

A088312 Number of sets of lists (cf. A000262) with even number of lists.

Original entry on oeis.org

1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is odd ; a(2*n+1) is even.
If k is odd then k*(k-1) divides a(k). Consequently, 6 divides a(6*n+3), 10 divides a(10*n+5), 14 divides a(14*n+7), and in general, if k is odd then 2*k divides a(2*k*n + k).
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
    Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
  • SageMath
    def A088312_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( cosh(x/(1-x)) ).egf_to_ogf().list()
    A088312_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: cosh(x/(1-x)).
a(n) = Sum_{k=1..floor(n/2)} n!/(2*k)!*binomial(n-1,2*k-1).
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n+4) - 2*(2*n+5)*a(n+3) + (6*n^2+24*n+23)*a(n+2) - 2*(n+1)*(n+2)*(2*n+3)*a(n+1) + n*(n+1)^2*(n+2)*a(n) = 0. - Emanuele Munarini, Sep 03 2017
a(n) = (1/2)*(A000262(n) + (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = (1/2)*(n-1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

More terms from Vaclav Kotesovec, Jul 04 2015
a(0)-a(1) prepended by Alois P. Heinz, May 10 2016

A088313 Number of "sets of lists" (cf. A000262) with an odd number of lists.

Original entry on oeis.org

0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017, 29272410, 410815351, 6231230412, 101560835377, 1769925341366, 32838929702671, 646218442877520, 13441862819232001, 294656673023216946, 6788407001443004647, 163962850573039534580, 4142654439686285737201
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is even; in fact, 2*n*(2*n-1)*(2n-2) divides a(2*n). a(2*n+1) is odd.
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
  • PARI
    my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ Joerg Arndt, Jul 16 2013
    
  • SageMath
    def A088313_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x/(1-x)) ).egf_to_ogf().list()
    A088313_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: sinh(x/(1-x)).
a(n) = Sum_{k=1..floor((n+1)/2)} n!/(2*k-1)!*binomial(n-1, 2*k-2).
E.g.f.: sinh(x/(1-x)) = x/(2-2*x)*E(0), where E(k)= 1 + 1/( 1 - x^2/(x^2 + 2*(1-x)^2*(k+1)*(2*k+3)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n) = (1/2)*(A000262(n) - (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

a(0)=0 prepended by Alois P. Heinz, May 10 2016

A365525 a(n) = Sum_{k=0..floor(n/4)} Stirling2(n,4*k).

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 65, 350, 1702, 7806, 34855, 157630, 770529, 4432220, 31307432, 259090260, 2316320073, 21172354778, 193091210857, 1744478148866, 15627203762926, 139526376391986, 1251976261264071, 11417796498945894, 107280845105151601
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(Stirling2(n,4*k),k=0..n/4) end proc:
    map(f, [$0..30]); # Robert Israel, Sep 11 2024
  • Mathematica
    a[n_] := Sum[StirlingS2[n, 4*k], {k, 0, Floor[n/4]}]; Array[a, 25, 0] (* Amiram Eldar, Sep 11 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, stirling(n, 4*k, 2));
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A365525(n): return sum(stirling(n,k<<2) for k in range((n>>2)+1)) # Chai Wah Wu, Sep 08 2023

Formula

Let A(0)=1, B(0)=0, C(0)=0 and D(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*D(k). a(n) = A(n), A365526(n) = B(n), A365527(n) = C(n) and A099948(n) = D(n).
G.f.: Sum_{k>=0} x^(4*k) / Product_{j=1..4*k} (1-j*x).
a(n) ~ n^n / (4 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025
Previous Showing 11-20 of 35 results. Next