A026374
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for all n >= 0, T(n,k) = T(n-1,k-1) + T(n-1,k) for odd n and 1< = k <= n-1, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1) for even n and 1 <= k <= n-1.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 11, 6, 1, 1, 7, 17, 17, 7, 1, 1, 9, 30, 45, 30, 9, 1, 1, 10, 39, 75, 75, 39, 10, 1, 1, 12, 58, 144, 195, 144, 58, 12, 1, 1, 13, 70, 202, 339, 339, 202, 70, 13, 1, 1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 4, 4, 1;
1, 6, 11, 6, 1;
1, 7, 17, 17, 7, 1;
1, 9, 30, 45, 30, 9, 1;
1, 10, 39, 75, 75, 39, 10, 1;
1, 12, 58, 144, 195, 144, 58, 12, 1;
1, 13, 70, 202, 339, 339, 202, 70, 13, 1;
1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1;
1, 16, 110, 425, 1015, 1558, 1558, 1015, 425, 110, 16, 1;
-
a026374 n k = a026374_tabl !! n !! k
a026374_row n = a026374_tabl !! n
a026374_tabl = [1] : map fst (map snd $ iterate f (1, ([1, 1], [1]))) where
f (0, (us, vs)) = (1, (zipWith (+) ([0] ++ us) (us ++ [0]), us))
f (1, (us, vs)) = (0, (zipWith (+) ([0] ++ vs ++ [0]) $
zipWith (+) ([0] ++ us) (us ++ [0]), us))
-- Reinhard Zumkeller, Feb 22 2014
-
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Dec 04 2009 *)
A292627
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(0,2*x).
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 1, 2, 3, 0, 1, 3, 6, 7, 6, 1, 4, 11, 20, 19, 0, 1, 5, 18, 45, 70, 51, 20, 1, 6, 27, 88, 195, 252, 141, 0, 1, 7, 38, 155, 454, 873, 924, 393, 70, 1, 8, 51, 252, 931, 2424, 3989, 3432, 1107, 0, 1, 9, 66, 385, 1734, 5775, 13236, 18483, 12870, 3139, 252, 1, 10, 83, 560, 2995, 12276, 36645, 73392, 86515, 48620, 8953, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + (k^2 + 2)*x^2/2! + (k^3 + 6*k)*x^3/3! + (k^4 + 12*k^2 + 6)*x^4/4! + (k^5 + 20*k^3 + 30*k)*x^5/5! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
2, 3, 6, 11, 18, 27, ...
0, 7, 20, 45, 88, 155, ...
6, 19, 70, 195, 454, 931, ...
0, 51, 252, 873, 2424, 5775, ...
-
Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[0, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/Sqrt[(1 + 2 x - k x) (1 - 2 x - k x)], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
A081606
Numbers having at least one 1 in their ternary representation.
Original entry on oeis.org
1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 84, 85, 86
Offset: 1
-
Select[Range[100],DigitCount[#,3,1]>0&] (* Harvey P. Dale, Nov 26 2022 *)
-
from itertools import count, islice
def A081606_gen(): # generator of terms
a = 0
for n in count(1):
b = int(bin(n)[2:],3)<<1
yield from range(a+1,b)
a = b
A081606_list = list(islice(A081606_gen(),30)) # Chai Wah Wu, Oct 13 2023
-
from gmpy2 import digits
def A081606(n):
def f(x):
s = digits(x>>1,3)
for i in range(l:=len(s)):
if s[i]>'1':
break
else:
return n+int(s,2)
return n-1+(int(s[:i] or '0',2)+1<Chai Wah Wu, Oct 29 2024
A246467
G.f.: 1 / AGM(1-5*x, sqrt((1-x)*(1-25*x))).
Original entry on oeis.org
1, 9, 121, 2025, 38025, 762129, 15912121, 341621289, 7484845225, 166549691025, 3751508008161, 85341068948529, 1957289174870121, 45199191579030225, 1049893021288265625, 24510327614556266025, 574726636455361317225, 13528549573868347823025, 319541915502909478890625
Offset: 0
G.f.: A(x) = 1 + 9*x + 121*x^2 + 2025*x^3 + 38025*x^4 + 762129*x^5 +...
where the square-root of the terms yields A026375:
[1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, ...]
the g.f. of which is 1/sqrt((1-x)*(1-5*x)).
-
CoefficientList[Series[1/ArithmeticGeometricMean[1-5x,Sqrt[(1-x)(1-25x)]],{x,0,20}],x] (* Harvey P. Dale, Nov 01 2023 *)
-
{a(n)=polcoeff( 1 / agm(1-5*x, sqrt((1-x)*(1-25*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=sum(k=0,n,binomial(n,k)*binomial(2*k,k))^2}
for(n=0, 20, print1(a(n), ", "))
A109187
Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k (1,0)-steps.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 6, 0, 12, 0, 1, 0, 30, 0, 20, 0, 1, 20, 0, 90, 0, 30, 0, 1, 0, 140, 0, 210, 0, 42, 0, 1, 70, 0, 560, 0, 420, 0, 56, 0, 1, 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1, 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1, 0, 2772, 0, 11550, 0, 9240, 0, 1980, 0, 110, 0, 1
Offset: 0
T(3,1)=6 because we have hud,hdu,udh,duh,uhd,dhu, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[0] 1;
[1] 0, 1;
[2] 2, 0, 1;
[3] 0, 6, 0, 1;
[4] 6, 0, 12, 0, 1;
[5] 0, 30, 0, 20, 0, 1;
[6] 20, 0, 90, 0, 30, 0, 1;
[7] 0, 140, 0, 210, 0, 42, 0, 1;
[8] 70, 0, 560, 0, 420, 0, 56, 0, 1;
[9] 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1;
[10] 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1;
[11] ...
From _Peter Bala_, Feb 11 2017: (Start)
The infinitesimal generator begins
0
0 0
2 0 0
0 6 0 0
-6 0 12 0 0
0 -30 0 20 0 0
80 0 -90 0 30 0 0
0 560 0 -210 0 42 0 0
-2310 0 2240 0 -420 0 56 0 0
....
and equals the generalized exponential Riordan array [log(Bessel_I(0,2x)),x], and so has integer entries. (End)
Diagonal of rational function R(x, y, t) = 1/(1 - (x^2 + t*x*y + y^2)) with respect to x,y, i.e., T(n,k) = [(xy)^n*t^k] R(x,y,t). For t=0..7 we have the diagonals:
A126869(t=0, column 0),
A002426(t=1, row sums),
A000984(t=2),
A026375(t=3),
A081671(t=4),
A098409(t=5),
A098410(t=6),
A104454(t=7).
-
G:=1/sqrt((1-t*z)^2-4*z^2):Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 13 do seq(coeff(t*P[n],t^k),k=1..n+1) od;
with(PolynomialTools): CL := p -> CoefficientList(simplify(p), x):
C := (n,x) -> binomial(2*n,n)*hypergeom([-n,-n],[-n+1/2],1/2-x/4):
seq(print(CL(C(n,x))), n=0..11); # Peter Luschny, Jan 23 2018
-
p[0] := 1; p[n_] := GegenbauerC[n, -n , -x/2];
Flatten[Table[CoefficientList[p[n], x], {n, 0, 11}]] (* Peter Luschny, Jan 23 2018 *)
-
T(n,k) = if ((n-k)%2, 0, binomial(n,k)*binomial(n-k, (n-k)/2));
concat(vector(12, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 06 2018
Original entry on oeis.org
1, 2, 8, 40, 208, 1088, 5696, 29824, 156160, 817664, 4281344, 22417408, 117379072, 614604800, 3218112512, 16850255872, 88229085184, 461973487616, 2418924584960, 12665653559296, 66318223015936, 347246723858432, 1818207451086848, 9520257811087360
Offset: 0
-
[n le 2 select (n) else 6*Self(n-1)-4*Self(n-2): n in [1..25]]; // Vincenzo Librandi, May 15 2015
-
LinearRecurrence[{6, -4}, {1, 2}, 30] (* Vincenzo Librandi, May 15 2015 *)
-
Vec((1-4*x) / (1-6*x+4*x^2) + O(x^30)) \\ Colin Barker, Sep 22 2017
A328807
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.
Original entry on oeis.org
1, 1, 3, 1, 3, 8, 1, 3, 9, 20, 1, 3, 11, 27, 48, 1, 3, 15, 45, 81, 112, 1, 3, 23, 93, 195, 243, 256, 1, 3, 39, 225, 639, 873, 729, 576, 1, 3, 71, 597, 2583, 4653, 3989, 2187, 1280, 1, 3, 135, 1665, 11991, 32133, 35169, 18483, 6561, 2816
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
8, 9, 11, 15, 23, 39, ...
20, 27, 45, 93, 225, 597, ...
48, 81, 195, 639, 2583, 11991, ...
112, 243, 873, 4653, 32133, 260613, ...
-
T[n_, k_] := Sum[Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
A339710
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n + k, k)*2^k.
Original entry on oeis.org
1, 7, 81, 1051, 14353, 201807, 2891409, 41976627, 615371169, 9089130967, 135048608401, 2016306678987, 30224723308081, 454603719479839, 6857319231939537, 103694587800440931, 1571449259865571137, 23860205774602899111, 362897293035114695121, 5527773456878667951483
Offset: 0
- Frits Beukers, Some Congruences for Apery Numbers, Mathematisch Instituut, University of Leiden, 1983, pages 1-2.
Cf.
A000079 (Sum(binomial(n, k))),
A000984 (Sum(binomial(n, k)^2)),
A026375 (Sum(binomial(n, k)*binomial(2*k, k))),
A001850 (Sum(binomial(n, k)*binomial(n+k, k))),
A005809 (Sum(binomial(n, k)*binomial(2*n, k))).
-
Table[Sum[Binomial[n,k]*Binomial[2n+k,k]*2^k,{k,0,n}],{n,0,20}] (* or *)
Table[Hypergeometric2F1[-n,1+2 n,1,-2],{n,0,20}] (* Stefano Spezia, Dec 17 2020 *)
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(2*n + k, k)*2^k); \\ Michel Marcus, Feb 12 2021
A110165
Riordan array (1/sqrt(1-6x+5x^2),(1-3x-sqrt(1-6x+5x^2))/(2x)).
Original entry on oeis.org
1, 3, 1, 11, 6, 1, 45, 30, 9, 1, 195, 144, 58, 12, 1, 873, 685, 330, 95, 15, 1, 3989, 3258, 1770, 630, 141, 18, 1, 18483, 15533, 9198, 3801, 1071, 196, 21, 1, 86515, 74280, 46928, 21672, 7210, 1680, 260, 24, 1, 408105, 356283, 236736, 119154, 44982, 12510, 2484, 333, 27, 1
Offset: 0
Rows begin
1;
3, 1;
11, 6, 1;
45, 30, 9, 1;
195, 144, 58, 12, 1;
873, 685, 330, 95, 15, 1;
Production array begins:
3, 1;
2, 3, 1;
0, 1, 3, 1;
0, 0, 1, 3, 1;
0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 1, 3, 1;
... - _Philippe Deléham_, Feb 08 2014
-
seq(seq( coeff((x^2 + 3*x + 1)^n, x, n-k), k = 0..n ), n = 0..10); # Peter Bala, Jan 09 2022
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/Sqrt[1-6#+5#^2]&, (1-3#-Sqrt[1-6#+5#^2])/(2#)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
A098473
Triangle T(n,k) read by rows, T(n, k) = binomial(2*k, k)*binomial(n, k), 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 6, 18, 20, 1, 8, 36, 80, 70, 1, 10, 60, 200, 350, 252, 1, 12, 90, 400, 1050, 1512, 924, 1, 14, 126, 700, 2450, 5292, 6468, 3432, 1, 16, 168, 1120, 4900, 14112, 25872, 27456, 12870, 1, 18, 216, 1680, 8820, 31752, 77616, 123552, 115830
Offset: 0
Rows begin
1;
1, 2;
1, 4, 6;
1, 6, 18, 20;
1, 8, 36, 80, 70;
1, 10, 60, 200, 350, 252;
-
A098473 := proc(n,k) binomial(2*k,k)*binomial(n,k) ; end proc:
-
Table[Binomial[2k,k]Binomial[n,k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 15 2020 *)
-
T(n,k)=binomial(2*k, k)*binomial(n, k);
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); /* as triangle */
Comments