cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 209 results. Next

A359893 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 3, 0, 1, 2, 0, 0, 0, 0, 1, 4, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 6, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 8, 1, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 11, 2, 7, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  1  0  1
  1  1  0  0  1
  2  0  2  0  0  0  1
  3  0  1  2  0  0  0  0  1
  4  1  2  0  3  0  0  0  0  0  1
  6  1  3  0  1  3  0  0  0  0  0  0  1
  8  1  6  0  2  0  4  0  0  0  0  0  0  0  1
 11  2  7  1  3  0  1  4  0  0  0  0  0  0  0  0  1
 15  2 10  3  4  0  2  0  5  0  0  0  0  0  0  0  0  0  1
 20  3 13  3  7  0  3  0  1  5  0  0  0  0  0  0  0  0  0  0  1
 26  4 19  3 11  1  4  0  2  0  6  0  0  0  0  0  0  0  0  0  0  0  1
For example, row n = 8 counts the following partitions:
  611       4211  422    .  332  .  44  .  .  .  .  .  .  .  8
  5111            521       431     53
  32111           2222              62
  41111           3221              71
  221111          3311
  311111          22211
  2111111
  11111111
		

Crossrefs

Row sums are A000041.
Row lengths are 2n-1 = A005408(n-1).
Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
The mean statistic is ranked by A326567/A326568.
Omitting half-steps gives A359901.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}]

A360005 Two times the median of the multiset of prime indices of n.

Original entry on oeis.org

2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 2, 12, 5, 5, 2, 14, 4, 16, 2, 6, 6, 18, 2, 6, 7, 4, 2, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 2, 26, 4, 28, 2, 4, 10, 30, 2, 8, 6, 9, 2, 32, 4, 8, 2, 10, 11, 34, 3, 36, 12, 4, 2, 9, 4, 38, 2, 11, 6, 40, 2, 42, 13, 6, 2, 9, 4, 44, 2
Offset: 2

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so a(360) = 3.
		

Crossrefs

The triangle for this statistic is A359893, cf. A359901, A359902.
Positions of even terms are A359908, odd A359912.
Positions of first appearances are A360006, sorted A360007.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[prix[n]],{n,2,100}]

A359901 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
   1
   1  1
   1  0  1
   2  2  0  1
   3  1  0  0  1
   4  2  3  0  0  1
   6  3  1  0  0  0  1
   8  6  2  4  0  0  0  1
  11  7  3  1  0  0  0  0  1
  15 10  4  2  5  0  0  0  0  1
  20 13  7  3  1  0  0  0  0  0  1
  26 19 11  4  2  6  0  0  0  0  0  1
  35 24 14  5  3  1  0  0  0  0  0  0  1
  45 34 17  8  4  2  7  0  0  0  0  0  0  1
  58 42 23 12  5  3  1  0  0  0  0  0  0  0  1
For example, row n = 9 counts the following partitions:
  (7,1,1)              (5,2,2)      (3,3,3)  (4,4,1)  .  .  .  .  (9)
  (6,1,1,1)            (6,2,1)      (4,3,2)
  (3,3,1,1,1)          (3,2,2,2)    (5,3,1)
  (4,2,1,1,1)          (4,2,2,1)
  (5,1,1,1,1)          (4,3,1,1)
  (3,2,1,1,1,1)        (2,2,2,2,1)
  (4,1,1,1,1,1)        (3,2,2,1,1)
  (2,2,1,1,1,1,1)
  (3,1,1,1,1,1,1)
  (2,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
Row sums are A325347.
The mean statistic is ranked by A326567/A326568.
Including half-steps gives A359893.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranks A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]

A002388 Decimal expansion of Pi^2.

Original entry on oeis.org

9, 8, 6, 9, 6, 0, 4, 4, 0, 1, 0, 8, 9, 3, 5, 8, 6, 1, 8, 8, 3, 4, 4, 9, 0, 9, 9, 9, 8, 7, 6, 1, 5, 1, 1, 3, 5, 3, 1, 3, 6, 9, 9, 4, 0, 7, 2, 4, 0, 7, 9, 0, 6, 2, 6, 4, 1, 3, 3, 4, 9, 3, 7, 6, 2, 2, 0, 0, 4, 4, 8, 2, 2, 4, 1, 9, 2, 0, 5, 2, 4, 3, 0, 0, 1, 7, 7, 3, 4, 0, 3, 7, 1, 8, 5, 5, 2, 2, 3, 1, 8, 2, 4, 0, 2
Offset: 1

Views

Author

Keywords

Comments

Also equals the volume of revolution of the sine or cosine curve for one full period, Integral_{x=0..2*Pi} sin(x)^2 dx. - Robert G. Wilson v, Dec 15 2005
Equals Sum_{n>0} 20/A026424(n)^2 where A026424 are the integers such that the number of prime divisors (counted with multiplicity) is odd. - Michel Lagneau, Oct 23 2015

Examples

			9.869604401089358618834490999876151135313699407240790626413349376220044...
		

References

  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 76.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Pi(R)^2; // G. C. Greubel, Mar 08 2018
    
  • Maple
    Digits:=100: evalf(Pi^2); # Wesley Ivan Hurt, Jul 13 2014
  • Mathematica
    RealDigits[Pi^2, 10, 111][[1]] (* Robert G. Wilson v, Dec 15 2005 *)
  • PARI
    default(realprecision, 20080); x=Pi^2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002388.txt", n, " ", d)); \\ Harry J. Smith, May 31 2009
    
  • Python
    # Use some guard digits when computing.
    # BBP formula (9 / 8) P(2, 64, 6, (16, -24, -8, -6,  1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPpi2(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            sixk = dec(6 * k)
            s += f * ( dec(16) / (sixk + 1) ** 2 - dec(24) / (sixk + 2) ** 2
                     - dec(8)  / (sixk + 3) ** 2 - dec(6)  / (sixk + 4) ** 2
                     + dec(1)  / (sixk + 5) ** 2 )
            f /= g
        return (s * dec(9)) / dec(8)
    print(BBPpi2(200))  # Peter Luschny, Nov 03 2023

Formula

Pi^2 = 11/2 + 16 * Sum_{k>=2} (1+k-k^3)/(1-k^2)^3. - Alexander R. Povolotsky, May 04 2009
Pi^2 = 3*(Sum_{n>=1} ((2*n+1)^2/Sum_{k=1..n} k^3)/4 - 1). - Alexander R. Povolotsky, Jan 14 2011
Pi^2 = (3/2)*(Sum_{n>=1} ((7*n^2+2*n-2)/(2*n^2-1)/(n+1)^5) - zeta(3) - 3*zeta(5) + 22 - 7*polygamma(0,1-1/sqrt(2)) + 5*sqrt(2)*polygamma(0,1-1/sqrt(2)) - 7*polygamma(0,1+1/sqrt(2)) - 5*sqrt(2)*polygamma(0,1+1/sqrt(2)) - 14*EulerGamma). - Alexander R. Povolotsky, Aug 13 2011
Also equals 32*Integral_{x=0..1} arctan(x)/(1+x^2) dx. - Jean-François Alcover, Mar 25 2013
From Peter Bala, Feb 05 2015: (Start)
Pi^2 = 20 * Integral_{x = 0 .. log(phi)} x*coth(x) dx, where phi = (1/2)*(1 + sqrt(5)) is the golden ratio.
Pi^2 = 10 * Sum_{k >= 0} binomial(2*k,k)*(1/(2*k + 1)^2)*(-1/16)^k. Similar series expansions hold for Pi/3 (see A019670) and (7*/216)*Pi^3 (see A091925).
The integer sequences A(n) := 2^n*(2*n + 1)!^2/n! and B(n) := A(n)*( Sum_{k = 0..n} binomial(2*k,k)*1/(2*k + 1)^2*(-1/16)^k ) both satisfy the second order recurrence equation u(n) = (24*n^3 + 44*n^2 + 2*n + 1)*u(n-1) + 8*(n - 1)*(2*n - 1)^5*u(n-2). From this observation we can obtain the continued fraction expansion Pi^2/10 = 1 - 1/(72 + 8*3^5/(373 + 8*2*5^5/(1051 + ... + 8*(n - 1)*(2*n - 1)^5/((24*n^3 + 44*n^2 + 2*n + 1) + ... )))). Cf. A093954. (End)
Pi^2 = A304656 * A093602 = (gamma(0, 1/6) - gamma(0, 5/6))*(gamma(0, 2/6) - gamma(0, 4/6)), where gamma(n,x) are the generalized Stieltjes constants. This formula can also be expressed by the polygamma function. - Peter Luschny, May 16 2018
Equals 8 + Sum_{k>=1} 1/(k^2 - 1/4)^2 = -8 + Sum_{k>=0} 1/(k^2 - 1/4)^2. - Amiram Eldar, Aug 21 2020
From Peter Bala, Dec 10 2021: (Start)
Pi^2 = (2^6)*Sum_{n >= 1} n^2/(4*n^2 - 1)^2 = (2^11)*Sum_{n >= 1} n^2/ ((4*n^2 - 1)^2*(4*n^2 - 3^2)^2) = ((2^19)*(3^2)/7) * Sum_{n >= 1} n^2/((4*n^2 - 1)^2*(4*n^2 - 3^2)^2*(4*n^2 - 5^2)^2).
More generally, it appears that for k >= 0 we have Pi^2 = (2*k+1)*2^(4*k+6) * (2*k)!^4/(4*k)! * Sum_{n >= 1} n^2/((4*n^2 - 1)^2*...*(4*n^2 - (2*k+1)^2)^2).
It also appears that for k >= 0 we have Pi^2 = (-1)^k * 2^(6*k+8)*(2*k+1)^3/(6*k+1) * ((2*k)!^6 * (3*k)!)/(k!^3 * (6*k)!) * Sum_{n >= 1} n^2/((4*n^2 - 1)^3*...*(4*n^2 - (2*k+1)^2)^3). (End)
From Peter Bala, Oct 27 2023: (Start)
Pi^2 = 10 - Sum_{n >= 1} 1/(n*(n + 1))^3.
Pi^2 = 6217/630 + (648/35)*Sum_{n >= 1} 1/(n*(n + 1)*(n + 2)*(n + 3))^3.
The general result (verified using the WZ method - see Wilf) is : for n >= 0,
Pi^2 = A(n) + (-1)^(n+1) * B(n)*Sum_{k >= 1} 1/(k*(k + 1)*...*(k + 2*n + 1))^3, where A(n) = 10 - Sum_{i = 1..n} (-1)^(i+1) * (56*i^2 + 24*i + 3)*(2*i)!^3*(3*i)!/(2*i^2*(2*i + 1)*(6*i + 1)!*i!^3) and B(n) = (2*n + 1)!^6 * (3*n)! / ( (2*n + 1)*(6*n + 1)!*n!^3 ).
Letting n -> oo gives the fast converging alternating series
Pi^2 = 10 - Sum_{i >= 1} (-1)^(i+1) * (56*i^2 + 24*i + 3)*(2*i)!^3 * (3*i)!/(2*i^2*(2*i + 1)*(6*i + 1)!*i!^3). The i-th summand of the series is asymptotic to (14/3) * 1/(i^2 * 27^i) so taking 70 terms of the series gives a value for Pi^2 accurate to more than 100 decimal places.
The series representation Pi^2 = 3*Sum_{k >= 1} (2*k)/k^3 can be accelerated to give the faster converging series
Pi^2 = 99/10 - (8/5)*Sum_{k >= 1} (2*k + 2)/(k*(k + 1)*(k + 2))^3 and
Pi^2 = 54715/5544 + (41472/385)*Sum_{k >= 1} (2*k + 4)/(k*(k + 1)*(k + 2)*(k + 3)*(k + 4))^3.
The general result is: for n >= 1, Pi^2 = C(n) + (-1)^n * D(n)*Sum_{k >= 1} (2*k + 2*n)/(k*(k + 1)*...*(k + 2*n))^3, where C(n) = A(n) - 10*(-1)^n*(3*n)!*(2*n)!^3/((2*n + 1)*n!^3*(6*n + 1)!) and D(n) = (2*n)!^6 * (3*n)! / ( 2*n*(6*n - 1)!*n!^3 ). (End)
Equals 9 + 3*Sum_{n>=1} 1/((n^2*(n+1)^2)). - Davide Rotondo, May 29 2025

Extensions

More terms from Robert G. Wilson v, Dec 15 2005

A359908 Numbers whose prime indices have integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with median 2, so 180 is in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so 360 is not in the sequence.
		

Crossrefs

The odd-length case is A027193.
For mean instead of median we have A316413.
These partitions are counted by A325347, strict A359907.
The complement is A359912, counted by A307683.
The median of prime indices is given by A360005/2.
The case of integer mean also is A360009.
A112798 lists prime indices, length A001222, sum A056239.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Median[prix[#]]]&]

A339890 Number of odd-length factorizations of n into factors > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 5, 1, 2, 1, 2, 1, 2, 1, 8, 1, 1, 2, 2, 1, 2, 1, 6, 2, 1, 1, 5, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2020

Keywords

Examples

			The a(n) factorizations for n = 24, 48, 60, 72, 96, 120:
  24      48          60       72          96          120
  2*2*6   2*3*8       2*5*6    2*4*9       2*6*8       3*5*8
  2*3*4   2*4*6       3*4*5    2*6*6       3*4*8       4*5*6
          3*4*4       2*2*15   3*3*8       4*4*6       2*2*30
          2*2*12      2*3*10   3*4*6       2*2*24      2*3*20
          2*2*2*2*3            2*2*18      2*3*16      2*4*15
                               2*3*12      2*4*12      2*5*12
                               2*2*2*3*3   2*2*2*2*6   2*6*10
                                           2*2*2*3*4   3*4*10
                                                       2*2*2*3*5
		

Crossrefs

The case of set partitions (or n squarefree) is A024429.
The case of partitions (or prime powers) is A027193.
The ordered version is A174726 (even: A174725).
The remaining (even-length) factorizations are counted by A339846.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.

Programs

  • Maple
    g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= n-> `if`(n<2, 0, g(n$2, 1)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ@Length[#]&]],{n,100}]

Formula

a(n) + A339846(n) = A001055(n).

A359902 Triangle read by rows where T(n,k) is the number of odd-length integer partitions of n with median k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 4, 3, 2, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 1, 8, 6, 3, 2, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 1, 14, 11, 5, 4, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  0  1
  1  0  1
  1  0  0  1
  2  1  0  0  1
  2  2  0  0  0  1
  4  2  1  0  0  0  1
  4  3  2  0  0  0  0  1
  7  4  3  1  0  0  0  0  1
  8  6  3  2  0  0  0  0  0  1
 12  8  4  3  1  0  0  0  0  0  1
 14 11  5  4  2  0  0  0  0  0  0  1
 21 14  8  4  3  1  0  0  0  0  0  0  1
 24 20 10  5  4  2  0  0  0  0  0  0  0  1
 34 25 15  6  5  3  1  0  0  0  0  0  0  0  1
For example, row n = 9 counts the following partitions:
  (7,1,1)              (5,2,2)      (3,3,3)  (4,4,1)  .  .  .  .  (9)
  (3,3,1,1,1)          (6,2,1)      (4,3,2)
  (4,2,1,1,1)          (2,2,2,2,1)  (5,3,1)
  (5,1,1,1,1)          (3,2,2,1,1)
  (2,2,1,1,1,1,1)
  (3,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Column k=1 is A002865(n-1).
Row sums are A027193 (odd-length ptns), strict A067659.
This is the odd-length case of A359901, with half-steps A359893.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A058398 counts partitions by mean, see also A008284, A327482.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.
A325347 counts partitions w/ integer median, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Median[#]==k&]],{n,15},{k,n}]

A320655 Number of factorizations of n into semiprimes. Number of multiset partitions of the multiset of prime factors of n, into pairs.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The characteristic function of nonzero terms is A065043. - R. J. Mathar, Jan 18 2021

Examples

			The a(900) = 5 factorizations into semiprimes:
  900 = (4*9*25)
  900 = (4*15*15)
  900 = (6*6*25)
  900 = (6*10*15)
  900 = (9*10*10)
The a(900) = 5 multiset partitions into pairs:
  {{1,1},{2,2},{3,3}}
  {{1,1},{2,3},{2,3}}
  {{1,2},{1,2},{3,3}}
  {{1,2},{1,3},{2,3}}
  {{2,2},{1,3},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[semfacs[n]],{n,100}]
  • PARI
    A320655(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A320655(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2020

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2020

A344606 Number of alternating permutations of the prime factors of n, counting multiplicity, including twins (x,x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 28 2021

Keywords

Comments

Differs from A335448 in having a(x^2) = 0 and a(270) = 0.
These are permutations of the prime factors of n, counting multiplicity, with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins (x,x) is A345164, which is identical to this sequence except when n is the square of a prime.

Examples

			The permutations for n = 2, 6, 30, 180, 210, 300, 420, 720, 840:
  2   23   253   23253   2537   25253   23275   2323252   232527
      32   325   32325   2735   25352   25273   2325232   232725
           352   32523   3275   32525   25372   2523232   252327
           523   35232   3527   35252   27253             252723
                 52323   3725   52325   27352             272325
                         5273   52523   32527             272523
                         5372           32725             325272
                         5723           35272             327252
                         7253           37252             523272
                         7352           52327             527232
                                        52723             723252
                                        57232             725232
                                        72325
                                        72523
For example, there are no alternating permutations of the prime factors of 270 because the only anti-runs are {3,2,3,5,3} and {3,5,3,2,3}, neither of which is alternating, so a(270) = 0.
		

Crossrefs

The version for permutations is A001250.
The extension to anti-run permutations is A335452.
The version for compositions is A344604.
The version for patterns is A344605.
Positions of zeros are A344653 (counted by A344654).
Not including twins (x,x) gives A345164.
A008480 counts permutations of prime indices (strict: A335489, rank: A333221).
A056239 adds up prime indices, row sums of A112798.
A071321 and A071322 are signed sums of prime factors.
A316523 is a signed sum of prime multiplicities.
A316524 and A344616 are signed sums of prime indices.
A325534 counts separable partitions (ranked by A335433).
A325535 counts inseparable partitions (ranked by A335448).
A344740 counts partitions with an alternating permutation or twin (x,x).

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,100}]

A087897 Number of partitions of n into odd parts greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2003

Keywords

Comments

Also number of partitions of n into distinct parts which are not powers of 2.
Also number of partitions of n into distinct parts such that the two largest parts differ by 1.
Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - Emeric Deutsch, Mar 30 2006
Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007
In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - Joerg Arndt, Jun 11 2013
Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - Clark Kimberling, Mar 05 2014
From Gus Wiseman, Aug 22 2021: (Start)
Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are:
32 222 322 332 432 3322 3332 4332 4432 5432 43332
2222 3222 22222 4322 33222 33322 33332 44322
32222 222222 43222 43322 333222
322222 332222 432222
2222222 3222222
(End)

Examples

			1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01:  [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03:  [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04:  [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05:  [ 1 1 1 2 5 5 5 2 1 1 1 ]
06:  [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07:  [ 1 1 3 5 5 5 3 1 1 ]
08:  [ 1 1 7 7 7 1 1 ]
09:  [ 1 2 2 5 5 5 2 2 1 ]
10:  [ 1 4 5 5 5 4 1 ]
11:  [ 2 2 2 2 3 3 3 2 2 2 2 ]
12:  [ 2 3 5 5 5 3 2 ]
13:  [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
  7  53  9    55  B    75    D    77    F      97    H      99      J
         333  73  533  93    553  95    555    B5    755    B7      775
                       3333  733  B3    753    D3    773    D5      955
                                  5333  933    5533  953    F3      973
                                        33333  7333  B33    5553    B53
                                                     53333  7533    D33
                                                            9333    55333
                                                            333333  73333
(End)
		

References

  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I

Crossrefs

The ordered version is A000931.
Partitions with no ones are counted by A002865, ranked by A005408.
The even version is A035363, ranked by A066207.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A000009 counts partitions into odd parts, ranked by A066208.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by A340932.
A027187 counts partitions with even length/maximum, ranks A028260/A244990.
A027193 counts partitions with odd length/maximum, ranks A026424/A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A058696 counts partitions of even numbers, ranked by A300061.
A340385 counts partitions with odd length and maximum, ranked by A340386.

Programs

  • Haskell
    a087897 = p [3,5..] where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 11 2013
  • Mathematica
    max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A087897_T(n,k):
        if n==0: return 1
        if k<3 or n<0: return 0
        return A087897_T(n,k-2)+A087897_T(n-k,k)
    def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz

Formula

Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023
Previous Showing 21-30 of 209 results. Next