A026647
a(n) = Sum_{k=0..floor(n/2)} A026637(n-k, k).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 17, 27, 45, 73, 119, 192, 312, 505, 818, 1323, 2142, 3466, 5609, 9075, 14685, 23761, 38447, 62208, 100656, 162865, 263522, 426387, 689910, 1116298, 1806209, 2922507, 4728717, 7651225, 12379943, 20031168
Offset: 0
-
[1] cat [n le 5 select Binomial(n, Floor(n/2)) else Self(n-2) +Self(n-3) +2*Self(n-4) +Self(n-5) +3: n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<6, Binomial[n, Floor[n/2]], a[n-2] +a[n-3] +2*a[n- 4] +a[n-5] +3]; (* a = A026647 *)
Table[a[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
LinearRecurrence[{1,1,0,1,-1,-1},{1,1,2,3,6,10,17},40] (* Harvey P. Dale, Jan 19 2025 *)
-
@CachedFunction
def a(n): # a = A026647
if n<6: return binomial(n, n//2)
else: return a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
A127361
a(n) = Sum_{k=0..n} binomial(n, floor(k/2))*(-2)^(n-k).
Original entry on oeis.org
1, -1, 4, -7, 22, -46, 130, -295, 790, -1870, 4864, -11782, 30148, -73984, 187534, -463687, 1168870, -2902870, 7293640, -18161170, 45541492, -113576596, 284470564, -710118262, 1777323772, -4439253196, 11105933440, -27749232700, 69403169200
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1+2*x-Sqrt(1-4*x^2))/(2*Sqrt(1-4*x^2)*(1+x-Sqrt(1-4*x^2))) )); // G. C. Greubel, Feb 17 2019
-
a:=n->add(binomial(n,floor(k/2))*(-2)^(n-k),k=0..n): seq(a(n),n=0..30); # Muniru A Asiru, Feb 18 2019
-
CoefficientList[Series[(1/Sqrt[1-4*x^2])*(1+x*(1-Sqrt[1-4*x^2]) / (2*x^2)) /(1+2*x*(1-Sqrt[1-4*x^2])/(2*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
-
my(x='x+O('x^30)); Vec( (1+2*x-sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*(1+x-sqrt(1-4*x^2))) ) \\ G. C. Greubel, Feb 17 2019
-
((1+2*x-sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*(1+x-sqrt(1-4*x^2))) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
A371753
a(n) = Sum_{k=0..floor(n/2)} binomial(5*n-2*k-1,n-2*k).
Original entry on oeis.org
1, 4, 37, 376, 4013, 44064, 492871, 5585080, 63901421, 736575316, 8540549322, 99503540008, 1163910870767, 13660217796736, 160782910480936, 1897131524755896, 22433316399634669, 265775992115557076, 3154067508987675679, 37487016824453703920, 446148092364247390618
Offset: 0
-
A371753 := proc(n)
add( binomial(5*n-2*k-1,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A371753(n),n=0..50) ; # R. J. Mathar, Sep 27 2024
-
a(n) = sum(k=0, n\2, binomial(5*n-2*k-1, n-2*k));
A386957
a(n) = Sum_{k=0..n} 8^k * binomial(2*n+1,n-k).
Original entry on oeis.org
1, 11, 114, 1163, 11806, 119646, 1211820, 12271179, 124251318, 1258065866, 12737997724, 128972535582, 1305848105836, 13221716621852, 133869898347264, 1355432788629963, 13723757247851046, 138953043155444562, 1406899565919247884, 14244858120395937738, 144229188529316725956
Offset: 0
-
[&+[8^k * Binomial(2*n+1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 14 2025
-
Table[Sum[8^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 14 2025 *)
-
a(n) = sum(k=0, n, 8^k*binomial(2*n+1, n-k));
A101850
A Catalan transform of Pell(n+1).
Original entry on oeis.org
1, 2, 7, 26, 100, 392, 1555, 6218, 25006, 100988, 409162, 1661948, 6764194, 27575732, 112570675, 460058906, 1881978694, 7704907724, 31566153058, 129400608044, 530734613920, 2177792579072, 8939838222718, 36711025334948
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 2/(3*Sqrt(1-4*x)+2*x-1) )); // G. C. Greubel, Feb 18 2019
-
CoefficientList[Series[(1-2x+3Sqrt[1-4x])/(4-16x-2x^2),{x,0,24}],x] (* Emanuele Munarini, Apr 02 2011 *)
CoefficientList[Series[2/(3*Sqrt[1-4*x]+2*x-1), {x,0,30}], x] (* or *) RecurrenceTable[{2*(n+3)*a[n+3] -4*(4*n+9)*a[n+2]+(31*n+45)*a[n+1] + 2*(2*n+3)*a[n]==0, a[0]==1, a[1]==2, a[2]==7}, a, {n, 0, 30}](* G. C. Greubel, Feb 18 2019 *)
-
makelist(sum(binomial(2*n+1,n+2*k+1)*2^(k+1)*(2*k+1)/(n+2*k+2),k,0,n),n,0,12); /* Emanuele Munarini, Apr 02 2011 */
-
my(x='x+O('x^30)); Vec(2/(3*sqrt(1-4*x)+2*x-1)) \\ G. C. Greubel, Feb 18 2019
-
(2/(3*sqrt(1-4*x)+2*x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
A158815
Triangle T(n,k) read by rows, matrix product of A046899(row-reversed) * A130595.
Original entry on oeis.org
1, 1, 1, 4, 1, 1, 13, 5, 1, 1, 46, 16, 6, 1, 1, 166, 58, 19, 7, 1, 1, 610, 211, 71, 22, 8, 1, 1, 2269, 781, 261, 85, 25, 9, 1, 1, 8518, 2920, 976, 316, 100, 28, 10, 1, 1, 32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1
Offset: 0
The triangle starts
1;
1, 1;
4, 1, 1;
13, 5, 1, 1;
46, 16, 6, 1, 1;
166, 58, 19, 7, 1, 1;
610, 211, 71, 22, 8, 1, 1;
2269, 781, 261, 85, 25, 9, 1, 1;
8518, 2620, 976, 316, 100, 28, 10, 1, 1;
32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1;
122464, 41746, 13938, 4544, 1442, 441, 133, 34, 12, 1, 1;
...
-
A158815 := proc (n, k)
add((-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k), j = 0..n);
end proc:
seq(seq(A158815(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
T[n_,k_]:= T[n,k]= Sum[(-1)^(j+k)*Binomial[j,k]*Binomial[2*n-j,n], {j,0,n}];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2021 *)
-
def A158815(n,k): return sum( (-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k) for j in (0..n) )
flatten([[A158815(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
A307354
a(n) = Sum_{0<=i<=j<=n} (-1)^(i+j) * (i+j)!/(i!*j!).
Original entry on oeis.org
1, 2, 6, 19, 65, 231, 841, 3110, 11628, 43834, 166298, 634140, 2428336, 9331688, 35967462, 138987715, 538287881, 2088842463, 8119916647, 31613327405, 123251518641, 481125828853, 1880262896537, 7355767408395, 28803717914791, 112887697489907, 442784607413427
Offset: 0
-
Table[Sum[Sum[(-1)^(i + j)*(i + j)!/(i!*j!), {i, 0, j}], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 04 2019 *)
-
a(n) = sum(i=0, n, sum(j=i, n, (-1)^(i+j)*(i+j)!/(i!*j!)));
-
a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 29 2023
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+x^3*(2/(1+sqrt(1-4*x)))^3))) \\ Seiichi Manyama, Jan 29 2023
A371798
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-2*k-1,n-2*k).
Original entry on oeis.org
1, 1, 2, 7, 26, 96, 356, 1331, 5014, 19006, 72412, 277058, 1063856, 4097510, 15823432, 61245987, 237536326, 922906150, 3591500972, 13996328322, 54614894396, 213360770840, 834409399672, 3266370155262, 12797894251276, 50184309630196, 196936674150296
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Sergi Elizalde, Nadia Lafrenière, Joel Brewster Lewis, Erin McNicholas, Jessica Striker, and Amanda Welch, Enumeration of interval-closed sets via Motzkin paths and quarter-plane walks, arXiv:2412.16368 [math.CO], 2024. See p. 13.
-
Table[Sum[(-1)^k Binomial[2n-2k-1,n-2k],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Oct 31 2024 *)
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-2*k-1, n-2*k));
A191354
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), and (2,1).
Original entry on oeis.org
1, 1, 3, 9, 25, 75, 227, 693, 2139, 6645, 20757, 65139, 205189, 648427, 2054775, 6526841, 20775357, 66251247, 211617131, 676930325, 2168252571, 6953348149, 22322825865, 71735559255, 230735316795, 742773456825, 2392949225565, 7714727440755, 24888317247705, 80341227688095
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1-2*x-3*x^2-4*x^3) )); // G. C. Greubel, Feb 18 2019
-
a[n_]:= Sum[Binomial[2k, k]*Sum[Binomial[j, n-k-j]*Binomial[k, j]*2^(j-k) *3^(-n+k+2j)*4^(n-k-2j), {j, 0, k}], {k, 0, n}];
Array[a, 30, 0] (* Jean-François Alcover, Jul 21 2018, after Vladimir Kruchinin *)
CoefficientList[Series[1/Sqrt[1-2*x-3*x^2-4*x^3], {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
-
a(n):=sum(binomial(2*k,k) * sum(binomial(j,n-k-j) * 2^(j-k) * binomial(k,j) * 3^(-n+k+2*j) * 4^(n-k-2*j),j,0,k),k,0,n); /* Vladimir Kruchinin, Feb 27 2016 */
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [1,2], [2,1]];
/* Joerg Arndt, Jun 30 2011 */
-
my(x='x+O('x^30)); Vec(1/sqrt(1-2*x-3*x^2-4*x^3)) \\ G. C. Greubel, Feb 18 2019
-
(1/sqrt(1-2*x-3*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
A377011
a(n) = Sum_{k=0..n} 3^k * binomial(2*n+1,n-k).
Original entry on oeis.org
1, 6, 34, 188, 1026, 5556, 29940, 160824, 862018, 4613636, 24667644, 131795912, 703812916, 3757135752, 20051429544, 106992663408, 570827898306, 3045193326372, 16244056119084, 86646747723048, 462161936699196, 2465043081687192, 13147597801986264, 70123266087502608
Offset: 0
-
[&+[3^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[3^k * Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, 3^k*binomial(2*n+1, n-k));
Comments