cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A281381 a(n) = n*(n + 1)*(4*n + 5)/2.

Original entry on oeis.org

0, 9, 39, 102, 210, 375, 609, 924, 1332, 1845, 2475, 3234, 4134, 5187, 6405, 7800, 9384, 11169, 13167, 15390, 17850, 20559, 23529, 26772, 30300, 34125, 38259, 42714, 47502, 52635, 58125, 63984, 70224, 76857, 83895, 91350, 99234, 107559, 116337, 125580, 135300, 145509, 156219, 167442, 179190, 191475
Offset: 0

Views

Author

Peter M. Chema, Jan 21 2017

Keywords

Comments

Shares its digital root, zero together with period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9] with A027480.
Final digits cycle a length period 20: repeat [0, 9, 9, 2, 0, 5, 9, 4, 2, 5, 5, 4, 4, 7, 5, 0, 4, 9, 7, 0].

Crossrefs

Partial sums of A195319.

Programs

  • Magma
    [n*(n+1)*(4*n+5)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 30 2022
  • Mathematica
    Table[n (n + 1) (4 n + 5)/2, {n, 0, 45}] (* or *)
    CoefficientList[Series[3 x (3 + x)/(1 - x)^4, {x, 0, 45}], x] (* Michael De Vlieger, Jan 21 2017 *)
  • PARI
    concat(0, Vec(3*x*(3 + x) / (1 - x)^4 + O(x^50))) \\ Colin Barker, Jan 21 2017
    
  • PARI
    a(n) = n*(n + 1)*(4*n + 5)/2 \\ Charles R Greathouse IV, Feb 01 2017
    

Formula

a(n) = 2*n^3 + 9*n^2/2 + 5*n/2.
a(n) = 3*A016061(n).
a(n) = A006002(n+1)*(n) - A006002(n)*(n-1).
a(n) = A007742(n)*(n - 1)/2.
From Colin Barker, Jan 21 2017: (Start)
G.f.: 3*x*(3 + x) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
From Stefano Spezia, Aug 30 2022: (Start)
E.g.f.: exp(x)*x*(18 + 21*x + 4*x^2)/2.
Sum_{n>0} 1/a(n) = 2*(20*log(8) + 10*Pi - 71)/25 = 0.1603805895595720759728288896228498341201... . (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*sqrt(2)*Pi/5 + 4*(3+sqrt(2))*log(2)/5 - 8*sqrt(2)*log(2-sqrt(2))/5 - 178/25. - Amiram Eldar, Sep 22 2022

A300758 a(n) = 2n*(n+1)*(2n+1).

Original entry on oeis.org

0, 12, 60, 168, 360, 660, 1092, 1680, 2448, 3420, 4620, 6072, 7800, 9828, 12180, 14880, 17952, 21420, 25308, 29640, 34440, 39732, 45540, 51888, 58800, 66300, 74412, 83160, 92568, 102660, 113460, 124992, 137280, 150348, 164220, 178920, 194472, 210900, 228228
Offset: 0

Views

Author

Christopher Purcell, Mar 12 2018

Keywords

Comments

The altitude h(n) = a(n)/A001844(n) of the (A005408(n), A046092(n) and A001844(n)) rectangular triangle is an irreducible fraction. - Ralf Steiner, Feb 25 2020
In this case, area A = a(n)/2 = A055112(n). - Bernard Schott, Feb 27 2020

Crossrefs

Formula

a(n) = 12*A000330(n).
G.f.: 12*x*(1+x)/(1-x)^4. - Colin Barker, Mar 12 2018
a(n) = 6*A006331(n) = 4*A059270(n) = 3*A002492(n) = 2*A055112(n). - Omar E. Pol, Apr 04 2018
From Ralf Steiner, Feb 27 2020: (Start)
a(n) = 2*n*A000384(n+1).
a(n) = sqrt(A016754(n)*A060300(n)).
(End)
a(n) = A005408(n) * A046092(n). - Bruce J. Nicholson, Apr 24 2020

Extensions

Edited by N. J. A. Sloane, Aug 01 2019

A319007 Sum of the next n nonnegative integers repeated (A004526).

Original entry on oeis.org

0, 1, 5, 14, 29, 51, 82, 124, 178, 245, 327, 426, 543, 679, 836, 1016, 1220, 1449, 1705, 1990, 2305, 2651, 3030, 3444, 3894, 4381, 4907, 5474, 6083, 6735, 7432, 8176, 8968, 9809, 10701, 11646, 12645, 13699, 14810, 15980, 17210, 18501, 19855, 21274, 22759, 24311, 25932
Offset: 1

Views

Author

Bruno Berselli, Sep 07 2018

Keywords

Comments

After 29, all terms are composite.

Examples

			Next n nonnegative integers repeated:    Sums:
0,  ......................................   0
0, 1,  ...................................   1
1, 2, 2,  ................................   5
3, 3, 4, 4,  .............................  14
5, 5, 6, 6, 7,  ..........................  29
7, 8, 8, 9, 9, 10,  ......................  51, etc.
		

Crossrefs

Sum of the next n nonnegative integers: A027480.

Programs

  • Magma
    [Integers()! (n*(n^2-2)+(-(n mod 2))^(n*(n-1)/2))/4: n in [1..50]];
    
  • Maple
    a := n -> (n^3 - 2*n + (-(n mod 2))^binomial(n,2))/4;
    seq(a(n), n=1..47); # Peter Luschny, Sep 09 2018
  • Mathematica
    Table[(2 n (n^2 - 2) + (1 - (-1)^n) (-1)^((n-1)/2))/8, {n, 1, 50}]
  • PARI
    concat(0, Vec(x^2*(1 + x + x^2)/((1 + x^2)*(1 - x)^4) + O(x^50))) \\ Colin Barker, Sep 10 2018

Formula

G.f.: x^2*(1 + x + x^2)/((1 + x^2)*(1 - x)^4).
a(n) = -a(-n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 7*a(n-4) + 4*a(n-5) - a(n-6).
a(n) = (2*n*(n^2 - 2) + (1 - (-1)^n)*(-1)^((n-1)/2))/8.
a(n) = A319006(n) - n.
a(n) = (n^3 - 2*n + Chi(n))/4 where Chi(n) = A101455(n). - Peter Luschny, Sep 09 2018

A118963 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that have k double rises (n >= 1, k >= 0).

Original entry on oeis.org

2, 3, 3, 4, 12, 4, 5, 30, 30, 5, 6, 60, 120, 60, 6, 7, 105, 350, 350, 105, 7, 8, 168, 840, 1400, 840, 168, 8, 9, 252, 1764, 4410, 4410, 1764, 252, 9, 10, 360, 3360, 11760, 17640, 11760, 3360, 360, 10, 11, 495, 5940, 27720, 58212, 58212, 27720, 5940, 495, 11, 12
Offset: 1

Views

Author

Emeric Deutsch, May 07 2006

Keywords

Comments

A Grand Dyck path of semilength n is a path in the half-plane x >= 0, starting at (0,0), ending at (2n,0) and consisting of steps u = (1,1) and d = (1,-1); a double rise in a Grand Dyck path is an occurrence of uu in the path.
For double rises only above the x-axis see A118964.
This is the triangle of Narayana with row n multiplied by n + 1. - Peter Luschny, May 02 2022

Examples

			T(3,2)=4 because we have uuuddd, duuudd, dduuud and ddduuu.
Triangle begins:
  2;
  3,    3;
  4,   12,    4;
  5,   30,   30,    5;
  6,   60,  120,   60,    6;
  7,  105,  350,  350,  105,    7;
  8,  168,  840, 1400,  840,  168,    8;
  9,  252, 1764, 4410, 4410, 1764,  252,    9;
		

Crossrefs

Programs

  • Maple
    r:=(1-z-t*z-sqrt(z^2*t^2-2*z^2*t-2*z*t+z^2-2*z+1))/2/t/z: G:=(1+r)^2/(1-t*r^2)-1: Gser:=simplify(series(G,z=0,15)): for n from 1 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
    for n from 0 to 10 do seq(binomial(n,i)*binomial(n+2,n+1-i), i=0..n ); od; # Zerinvary Lajos, Nov 03 2006

Formula

T(n,1) = n(n^2 - 1)/2 (A027480).
T(n,2) = (n+1)n(n-1)^2*(n-2)/12 (A027789).
T(n,k) = ((n+1)/n)*binomial(n,k)*binomial(n,k+1).
Sum_{k>=0} k*T(n,k) = (2n-1)!/(n!(n-2)!) (A000917).
G.f.: G(t,z) = (1+r)^2/(1 - tr^2) - 1, where r = r(t,z) is the Narayana function, defined by (1+r)(1+tr)z = r, r(t,0) = 0. More generally, the g.f. H = H(t,s,u,z), where t,s and u mark double rises above, below and on the x-axis, respectively, is H = (1 + r(s,z))/(1 - z(1 + tr(t,z))(1 + ur(s,z))).
Row n is given by seq(binomial(n, k)*binomial(n+2, n+1-k), k=0..n). - Zerinvary Lajos, Nov 03 2006
T(n,k)/(n+1) = A001263(n,k). - Peter Luschny, May 02 2022

A141535 An eighth of the product of three integers surrounding the (n+1)-st prime, minus half of the product of the 3 numbers surrounding n+1.

Original entry on oeis.org

0, 3, 12, 105, 168, 444, 603, 1158, 2550, 3060, 5469, 7518, 8568, 11292, 16563, 23217, 25458, 34167, 40740, 43998, 56307, 65391, 81210, 106272, 120000, 126750, 142155, 149685, 166863, 241152
Offset: 1

Views

Author

Roger L. Bagula, Aug 12 2008

Keywords

Programs

  • Maple
    A127917 := proc(n) p := ithprime(n) ; (p-1)*p*(p+1) ; end: A027480 := proc(n) n*(n+1)*(n+2)/2 ; end: A := proc(n) A127917(n+1)/8-A027480(n) ; end: for n from 1 to 40 do printf("%d,",A(n)) ; od: # R. J. Mathar, Aug 20 2008
  • Mathematica
    a[n_] = (Prime[n + 1] - 1)*Prime[n + 1]*(Prime[n + 1] + 1)/8 - n*(n + 1)*(n + 2)/2; Table[a[n], {n, 1, 30}]
    f[n_]:=Module[{pr=Prime[n+1],n1=n+1},(pr(pr^2-1))/8-(n1(n1^2-1))/2]; Array[f,30] (* Harvey P. Dale, May 24 2012 *)

Formula

a(n) = A127917(n+1)/8-A027480(n) = {p(n+1)-1}*p(n+1)*{p(n+1)+1}/8-n(n+1)(n+2)/2.

Extensions

Edited by N. J. A. Sloane, Aug 23 2008

A147656 The arithmetic mean of the n-th and (n+1)-st cubes, rounded down.

Original entry on oeis.org

0, 4, 17, 45, 94, 170, 279, 427, 620, 864, 1165, 1529, 1962, 2470, 3059, 3735, 4504, 5372, 6345, 7429, 8630, 9954, 11407, 12995, 14724, 16600, 18629, 20817, 23170, 25694, 28395, 31279, 34352, 37620, 41089, 44765, 48654, 52762, 57095, 61659
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence relate to intervals between cubes in the same fashion as terms of A002378 are related to intervals between squares.

Crossrefs

Programs

  • Magma
    I:=[0, 4, 17, 45]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, May 06 2012
  • Maple
    seq(coeff(series(x*(x^2+x+4)/(1-x)^4,x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Sep 11 2018
  • Mathematica
    Table[(n^3+(n+1)^3-1)/2,{n,0,70}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)
  • PARI
    j=[];for (n=0,40,j=concat(j,n^3+floor(((n+1)^3 - n^3)/2)));j
    
  • PARI
    a(n) = n*(2*n^2+3*n+3)/2; \\ Altug Alkan, Sep 20 2018
    

Formula

a(n) = floor((A000578(n) + A000578(n+1))/2).
From R. J. Mathar, Nov 11 2008: (Start)
a(n) = A000578(n) + A045943(n) = n*(2n^2+3n+3)/2.
G.f.: x*(4+x+x^2)/(1-x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 06 2012
a(n) = A027480(n) + A006003(n). - Bruce J. Nicholson, Jun 03 2018
From A.H.M. Smeets, Sep 10 2018: (Start)
a(n) = Sum_{k=0..n-1} (n+1)^2-k for n >= 0 with empty domain of summation for n = 0.
a(n) = n*(n+1)^2 - n*(n-1)/2 for n >= 0.
Lim_{n -> inf} a(n-1)/n^3 = 1. (End)
E.g.f.: exp(x)*(8*x + 9*x^2 + 2*x^3)/2. - Stefano Spezia, Sep 12 2018
a(n) = A081435(n)-1. - R. J. Mathar, Sep 14 2018

A157024 a(0)=1, a(n) = (3n-1)*3n*(3n+1)/2 for n>0.

Original entry on oeis.org

1, 12, 105, 360, 858, 1680, 2907, 4620, 6900, 9828, 13485, 17952, 23310, 29640, 37023, 45540, 55272, 66300, 78705, 92568, 107970, 124992, 143715, 164220, 186588, 210900, 237237, 265680, 296310, 329208, 364455, 402132, 442320, 485100, 530553, 578760, 629802
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 21 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,((3n)(3n-1)(3n+1))/2}; NestList[nxt,{0,1},40][[All,2]]/.(0->Nothing) (* Harvey P. Dale, Sep 24 2016 *)

Formula

Sum_{n>=0} 1/a(n) = log(3).
G.f.: (1+8x+63x^2+8x^3+x^4)/(1-x)^4.
a(n) = A027480(3n-1), n>0. - R. J. Mathar, Apr 07 2009
Sum_{n>=0} (-1)^n/a(n) = 4*log(2)/3. - Amiram Eldar, Feb 27 2022

A180013 Triangular array read by rows: T(n,k) = number of fixed points in the permutations of {1,2,...,n} that have exactly k cycles; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 8, 12, 4, 0, 30, 55, 30, 5, 0, 144, 300, 210, 60, 6, 0, 840, 1918, 1575, 595, 105, 7, 0, 5760, 14112, 12992, 5880, 1400, 168, 8, 0, 45360, 117612, 118188, 60921, 17640, 2898, 252, 9, 0, 403200, 1095840, 1181240, 672840, 224490, 45360, 5460, 360, 10
Offset: 1

Views

Author

Geoffrey Critzer, Jan 13 2011

Keywords

Comments

Row sums = n! which is the number of fixed points in all the permutations of {1,2,...,n}.
It appears that column k = 2 is A001048 (with different offset).
From Olivier Gérard, Oct 23 2012: (Start)
This is a multiple of the triangle of Stirling numbers of the first kind, A180013(n,k) = (n)*A132393(n-1,k).
Another interpretation is : T(n,n-k) is the total number of ways to insert the symbol n among the cycles of permutations of [n-1] with (n+1-k) cycles to form a canonical cycle representation of a permutation of [n]. For each cycle of length c, there are c places to insert a symbol, and for each permutation there is the possibility to create a new cycle (a fixed point).
(End)

Examples

			T(4,3)= 12 because there are 12 fixed points in the permutations of 4 that have 3 cycles: (1)(2)(4,3); (1)(3,2)(4); (1)(4,2)(3); (2,1)(3)(4); (3,1)(2)(4); (4,1)(2)(3) where the permutations are represented in their cycle notation.
1
0   2
0   3    3
0   8   12    4
0  30   55   30   5
0 144  300  210  60    6
0 840 1918 1575 595  105   7
		

Crossrefs

Cf. A000142, A001048. Diagonal, lower diagonal give: A000027, A027480(n+1).

Programs

  • Maple
    egf:= k-> x * (log(1/(1-x)))^(k-1) / (k-1)!:
    T:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jan 16 2011
    # As coefficients of polynomials:
    with(PolynomialTools): with(ListTools): A180013_row := proc(n)
    `if`(n=0, 1,(n+1)!*hypergeom([-n,1-x],[1],1)); CoefficientList(simplify(%),x) end: FlattenOnce([seq(A180013_row(n), n=0..9)]); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[Table[(n + 1) Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 9}],1] (* Olivier Gérard, Oct 23 2012 *)

Formula

E.g.f.: for column k: x*(log(1/(1-x)))^(k-1)/(k-1)!.
T(n, k) = [x^k] (n+1)!*hypergeom([-n,1-x],[1],1) for n>0. - Peter Luschny, Jan 28 2016

Extensions

More terms from Alois P. Heinz, Jan 16 2011

A189913 Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42
Offset: 0

Views

Author

Peter Luschny, May 24 2011

Keywords

Comments

The triangle may be regarded a generalization of the triangle A097610:
A097610(n,k) = binomial(n,k)*(2*k)$/(k+1);
T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1).
Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.
T(n,n) = A057977(n) which can be seen as extended Catalan numbers.

Examples

			[0]  1
[1]  1, 1
[2]  1, 2,  1
[3]  1, 3,  3,   3
[4]  1, 4,  6,  12,  2
[5]  1, 5, 10,  30, 10,  10
[6]  1, 6, 15,  60, 30,  60,  5
[7]  1, 7, 21, 105, 70, 210, 35, 35
		

Crossrefs

Row sums are A189912.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018
  • Maple
    A189913 := (n,k) -> binomial(n,k)*(k!/iquo(k,2)!^2)/(iquo(k,2)+1):
    seq(print(seq(A189913(n,k),k=0..n)),n=0..7);
  • Mathematica
    T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)
  • PARI
    {T(n,k) = binomial(n,k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 13 2018
    

Formula

From R. J. Mathar, Jun 07 2011: (Start)
T(n,1) = n.
T(n,2) = A000217(n-1).
T(n,3) = A027480(n-2).
T(n,4) = A034827(n). (End)

A206492 Sums of rows of the sequence of triangles with nonnegative integers and row widths defined by A004738.

Original entry on oeis.org

0, 3, 3, 9, 21, 19, 11, 25, 45, 74, 66, 49, 26, 55, 90, 134, 190, 170, 138, 97, 50, 103, 162, 230, 310, 405, 365, 310, 243, 167, 85, 173, 267, 370, 485, 615, 763, 693, 605, 502, 387, 263, 133, 269, 411, 562, 725, 903, 1099, 1316, 1204, 1071, 920, 754, 576, 389
Offset: 1

Views

Author

Alex Ratushnyak, Jun 28 2012

Keywords

Comments

Row widths: A004738(n): 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5...
Pits: A051925(n+1): 0, 3, 11, 26, 50, 85, 133, 196, 276, 375, 495, 638...
Peak tops: A007290(n+3): 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572...
Peak bases: A084990(n+1): 1, 6, 17, 36, 65, 106, 161, 232, 321, 430, 561...

Examples

			The sequence of triangles begins:
0
1 2
3
4 5
6 7 8
9 10
11
12 13
14 15 16
17 18 19 20
21 22 23
24 25
26
27 28
29 30 31
32 33 34 35
36 37 38 39 40
41 42 43 44
45 46 47
48 49
50
51 52
		

Crossrefs

Cf. A027480: sums of rows of a triangle with increasing row widths: 0; 1,2; 3,4,5; 6,7,8,9; ...

Programs

  • Python
    curSign=-1
    curLength=sum=0
    rowLength=topLength=1
    for n in range(1232):
        sum += n
        curLength += 1
        if curLength==rowLength:
            print(sum, end=',')
            curLength = sum = 0
            if rowLength==1 or rowLength==topLength:
                curSign = -curSign
            topLength += (rowLength==1)
            rowLength += curSign
Previous Showing 41-50 of 59 results. Next