cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 300 results. Next

A112526 Characteristic function for powerful numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

A signed multiplicative variant is defined by b(n) = a(n)*mu(n) with mu = A008683, such that b(p^e)=0 if e=1 and b(p^e)= -1 if e>1. This has Dirichlet series Sum_{n>=1} b(n)/n = A005596 and Sum_{n>=1} b(n)/n^2 = A065471. - R. J. Mathar, Apr 04 2011

Examples

			a(72) = 1 because 72 = 2^3*3^2 has all exponents > 1.
		

Crossrefs

Differs from characteristic function of perfect powers A075802 at Achilles numbers A052486.
Cf. A001694 (powerful numbers), A124010, A001221, A027746.

Programs

  • Haskell
    a112526 1 = 1
    a112526 n = fromEnum $ (> 1) $ minimum $ a124010_row n
    -- Reinhard Zumkeller, Jun 03 2015, Sep 16 2011
    
  • Mathematica
    cfpn[n_]:=If[n==1||Min[Transpose[FactorInteger[n]][[2]]]>1,1,0]; Array[ cfpn,120] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X^3)/(1-X^2))[n], ", ")) \\ Vaclav Kotesovec, Jul 15 2022
    
  • PARI
    a(n) = ispowerful(n); \\ Amiram Eldar, Jul 02 2025
    
  • Python
    from sympy import factorint
    def A112526(n): return int(all(e>1 for e in factorint(n).values())) # Chai Wah Wu, Sep 15 2024

Formula

Multiplicative with a(p^e) = 1 - 0^(e-1), e > 0 and p prime.
Dirichlet g.f.: zeta(2*s)*zeta(3*s)/zeta(6*s), e.g., A082695 at s=1.
a(n) * A008966(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = {m: Min{A124010(m,k): k=1..A001221(m)} > 1}. - Reinhard Zumkeller, Jun 03 2015
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)/zeta(3) + 6*zeta(2/3)*n^(1/3)/Pi^2. - Vaclav Kotesovec, Feb 08 2019
a(n) = Sum_{d|n} A005361(d)*A008683(n/d). - Ridouane Oudra, Jul 03 2025

A370808 Greatest number of multisets that can be obtained by choosing a divisor of each part of an integer partition of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 11, 14, 17, 19, 23, 29, 30, 39, 41, 51, 58, 66, 78, 82, 102, 110, 132, 144, 162, 186, 210, 228, 260, 296, 328, 366, 412, 462, 512, 560, 638, 692, 764, 860, 924, 1028, 1122, 1276, 1406, 1528, 1721, 1898, 2056, 2318, 2506, 2812, 3020, 3442
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Examples

			For the partitions of 5 we have the following choices:
      (5): {{1},{5}}
     (41): {{1,1},{1,2},{1,4}}
     (32): {{1,1},{1,2},{1,3},{2,3}}
    (311): {{1,1,1},{1,1,3}}
    (221): {{1,1,1},{1,1,2},{1,2,2}}
   (2111): {{1,1,1,1},{1,1,1,2}}
  (11111): {{1,1,1,1,1}}
So a(5) = 4.
		

Crossrefs

For just prime factors we have A370809.
The version for factorizations is A370816, for just prime factors A370817.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts condensed partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355733 counts choices of divisors of prime indicec.
A370320 counts non-condensed partitions, ranks A355740.
A370592 counts factor-choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Max[Length[Union[Sort/@Tuples[Divisors/@#]]]&/@IntegerPartitions[n]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 17 2024

A037273 Number of steps to reach a prime under "replace n with concatenation of its prime factors", or -1 if no prime is ever reached.

Original entry on oeis.org

-1, 0, 0, 2, 0, 1, 0, 13, 2, 4, 0, 1, 0, 5, 4, 4, 0, 1, 0, 15, 1, 1, 0, 2, 3, 4, 4, 1, 0, 2, 0, 2, 1, 5, 3, 2, 0, 2, 1, 9, 0, 2, 0, 9, 6, 1, 0, 15
Offset: 1

Views

Author

Keywords

Comments

Starting with 49, no prime has been reached after 79 steps.
a(49) > 118, see A056938 and FactorDB link. - Michael S. Branicky, Nov 19 2020

Examples

			13 is already prime, so a(13) = 0.
Starting with 14 we get 14 = 2*7, 27 = 3*3*3, 333 = 3*3*37, 3337 = 47*71, 4771 = 13*367, 13367 is prime; so a(14) = 5.
		

Crossrefs

Programs

  • Haskell
    a037273 1 = -1
    a037273 n = length $ takeWhile ((== 0) . a010051) $
       iterate (\x -> read $ concatMap show $ a027746_row x :: Integer) n
    -- Reinhard Zumkeller, Jan 08 2013
    
  • Mathematica
    nxt[n_] := FromDigits[Flatten[IntegerDigits/@Table[#[[1]], {#[[2]]}]&/@ FactorInteger[n]]]; Table[Length[NestWhileList[nxt, n, !PrimeQ[#]&]] - 1, {n, 48}] (* Harvey P. Dale, Jan 03 2013 *)
  • PARI
    row_a027746(n, o=[1])=if(n>1, concat(apply(t->vector(t[2], i, t[1]), Vec(factor(n)~))), o) \\ after M. F. Hasler in A027746
    tonum(vec) = my(s=""); for(k=1, #vec, s=concat(s, Str(vec[k]))); eval(s)
    a(n) = if(n==1, return(-1)); my(x=n, i=0); while(1, if(ispseudoprime(x), return(i)); x=tonum(row_a027746(x)); i++) \\ Felix Fröhlich, May 17 2021
    
  • Python
    from sympy import factorint
    def a(n):
        if n < 2: return -1
        klst, f = [n], sorted(factorint(n, multiple=True))
        while len(f) > 1:
            klst.append(int("".join(map(str, f))))
            f = sorted(factorint(klst[-1], multiple=True))
        return len(klst) - 1
    print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Aug 02 2021

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010
a(1) = -1 by Reinhard Zumkeller, Jan 08 2013
Name edited by Felix Fröhlich, May 17 2021

A065339 Number of primes congruent to 3 modulo 4 dividing n (with multiplicity).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 1, 1, 0, 0, 3, 1, 0, 1, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 2, 1, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 3, 1, 1, 2, 0, 1, 1, 0, 1, 3, 0, 0, 2, 1, 0, 2, 1, 1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 4, 0, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 2, 3, 0, 0, 1, 1, 0, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Crossrefs

Programs

  • Haskell
    a065339 1 = 0
    a065339 n = length [x | x <- a027746_row n, mod x 4 == 3]
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    A065339 := proc(n)
        a := 0 ;
        for f in ifactors(n)[2] do
            if op(1,f) mod 4 = 3 then
                a := a+op(2,f) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Dec 16 2011
  • Mathematica
    f[n_]:=Plus@@Last/@Select[If[n==1,{},FactorInteger[n]],Mod[#[[1]],4]==3&]; Table[f[n],{n,100}] (* Ray Chandler, Dec 18 2011 *)
  • PARI
    A065339(n)=sum(i=1,#n=factor(n)~,if(n[1,i]%4==3,n[2,i]))  \\ M. F. Hasler, Apr 16 2012
    
  • Scheme
    ;; using memoization-macro definec
    (definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) (else (+ (/ (- (modulo (A020639 n) 4) 1) 2) (A065339 (A032742 n))))))
    ;; Antti Karttunen, Aug 14 2015
    
  • Scheme
    ;; using memoization-macro definec
    (definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) ((= 1 (modulo (A020639 n) 4)) (A065339 (A032742 n))) (else (+ (A067029 n) (A065339 (A028234 n))))))
    ;; Antti Karttunen, Aug 14 2015

Formula

a(n) = A001222(n) - A007814(n) - A083025(n).
(2^A007814(n)) * (3^a(n)) = A065338(n).
From Antti Karttunen, Aug 14 2015: (Start)
a(1) = a(2) = 0; thereafter, if n is even, a(n) = a(n/2), otherwise a(n) = ((A020639(n) mod 4)-1)/2 + a(n/A020639(n)). [Where A020639(n) gives the smallest prime factor of n.]
Other identities and observations. For all n >= 1:
a(n) = A007949(A065338(n)).
a(n) = A001222(A097706(n)).
a(n) >= A260728(n). [See A260730 for the positions of differences.] (End)
Totally additive with a(2) = 0, a(p) = 1 if p == 3 (mod 4), and a(p) = 0 if p == 1 (mod 4). - Amiram Eldar, Jun 17 2024

A075254 a(n) = n + (sum of prime factors of n taken with repetition).

Original entry on oeis.org

1, 4, 6, 8, 10, 11, 14, 14, 15, 17, 22, 19, 26, 23, 23, 24, 34, 26, 38, 29, 31, 35, 46, 33, 35, 41, 36, 39, 58, 40, 62, 42, 47, 53, 47, 46, 74, 59, 55, 51, 82, 54, 86, 59, 56, 71, 94, 59, 63, 62, 71, 69, 106, 65, 71, 69, 79, 89, 118, 72, 122, 95, 76, 76, 83, 82, 134, 89, 95, 84, 142
Offset: 1

Views

Author

Zak Seidov, Sep 10 2002

Keywords

Comments

a(n) = n + A001414(n).
Product of prime factors plus sum of prime factors of n. For minus instead of plus we have A075255, zeros A175787. - Gus Wiseman, Jan 26 2025

Examples

			a(6)=11 because 6=2*3, sopfr(6)=2+3=5 and 6+5=11.
		

Crossrefs

A000027 gives product of prime factors, indices A003963.
A000040 lists the primes, differences A001223.
A001414 gives sum of prime factors, indices A056239.
A027746 lists prime factors, indices A112798, count A001222.
A075255 gives product of prime factors minus sum of prime factors.

Programs

  • Haskell
    a075254 n = n + a001414 n  -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [n eq 1 select 1 else (&+[p[1]*p[2]: p in Factorization(n)]) + n: n in [1..80]]; // G. C. Greubel, Jan 10 2019
    
  • Maple
    A075254 := proc(n)
        n+A001414(n) ;
    end proc: # R. J. Mathar, Jul 27 2015
  • Mathematica
    Table[If[n==1,1, n +Plus@@Times@@@FactorInteger@n], {n, 80}] (* G. C. Greubel, Jan 10 2019 *)
  • PARI
    a(n) = my(f = factor(n)); n + sum(k=1, #f~, f[k,1]*f[k,2]); \\ Michel Marcus, Feb 22 2017
    
  • Sage
    [n + sum(factor(n)[j][0]*factor(n)[j][1] for j in range(0, len(factor(n)))) for n in range(1, 80)] # G. C. Greubel, Jan 10 2019

Formula

From Gus Wiseman, Jan 26 2025: (Start)
First differences are 1 - A090340(n).
a(n) = 2*n - A075255(n).
a(n) = 2*A001414(n) + A075255(n).
(End)

A360015 Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximal exponent.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 92, 94, 96, 100, 102, 104, 106, 110, 112, 114, 116, 118, 120, 122, 124, 128, 130, 132, 134, 136, 138
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) = A051903(k).
The powers of 2 (A000079) are all terms.
The product of any two terms (not necessarily distinct) is also a term.
This sequence is a disjoint union of {1} and the subsequences of numbers m of the form 2^(k-1)*o where o = A000265(m), the odd part of m, is a k-free number, for k >= 2. These subsequences include, for k = 2, numbers of the form 2*o where o is an odd squarefree number (A056911); for k = 3, numbers of the form 4*o where o is an odd cubefree number; etc.
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*(2^k-1)) = 0.44541445377638761933... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} (k-1)/(zeta(k)*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*(2^k-1)) = 2.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
Also numbers whose multiset of prime factors has low (i.e. least) mode 2. Here, a mode in a multiset is an element that appears at least as many times as each of the others; for example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. - Gus Wiseman, Jul 14 2023

Examples

			From _Gus Wiseman_, Jul 14 2023: (Start)
108 = 2*2*3*3*3 is missing because its mode is not 2.
180 = 2*2*3*3*5 is present because it has low mode 2.
The terms together with their prime factorizations begin:
   1 =
   2 = 2
   4 = 2*2
   6 = 2*3
   8 = 2*2*2
  10 = 2*5
  12 = 2*2*3
  14 = 2*7
  16 = 2*2*2*2
  20 = 2*2*5
  22 = 2*11
  24 = 2*2*2*3
  26 = 2*13
  28 = 2*2*7
  30 = 2*3*5
  32 = 2*2*2*2*2
  34 = 2*17
  36 = 2*2*3*3
(End)
		

Crossrefs

Partitions of this type are counted by A241131.
The case of unique mode is A360013, complement here A360014.
For unique minimal prime exponent we have A364061, counted by A364062.
For minimal prime exponent we have A364158, counted by A364159.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.

Programs

  • Mathematica
    q[n_] := IntegerExponent[n, 2] == Max[FactorInteger[n][[;; , 2]]]; q[1] = True; Select[Range[150], q]
  • PARI
    is(n) = n == 1 || vecmax(factor(n)[,2]) == valuation(n, 2);

Formula

Disjoint union of A360013 and A360014.
a(n) = A360013(n)/2. - Gus Wiseman, Jul 14 2023

A370320 Number of non-condensed integer partitions of n, or partitions where it is not possible to choose a different divisor of each part.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 9, 13, 20, 28, 40, 54, 74, 102, 135, 180, 235, 310, 397, 516, 658, 843, 1066, 1349, 1687, 2119, 2634, 3273, 4045, 4995, 6128, 7517, 9171, 11181, 13579, 16457, 19884, 23992, 28859, 34646, 41506, 49634, 59211, 70533, 83836, 99504, 117867
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2024

Keywords

Comments

Includes all partitions containing 1.

Examples

			The a(0) = 0 through a(8) = 13 partitions:
  .  .  (11)  (111)  (211)   (221)    (222)     (331)      (611)
                     (1111)  (311)    (411)     (511)      (2222)
                             (2111)   (2211)    (2221)     (3221)
                             (11111)  (3111)    (3211)     (3311)
                                      (21111)   (4111)     (4211)
                                      (111111)  (22111)    (5111)
                                                (31111)    (22211)
                                                (211111)   (32111)
                                                (1111111)  (41111)
                                                           (221111)
                                                           (311111)
                                                           (2111111)
                                                           (11111111)
		

Crossrefs

The complement is counted by A239312 (condensed partitions).
These partitions have ranks A355740.
Factorizations in the case of prime factors are A368413, complement A368414.
The complement for prime factors is A370592, ranks A368100.
The version for prime factors (not all divisors) is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370804, complement A370805.
The version for factorizations is A370813, complement A370814.
A000005 counts divisors.
A000041 counts integer partitions.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]==0&]],{n,0,30}]

Extensions

a(31)-a(47) from Alois P. Heinz, Mar 03 2024

A370583 Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element.

Original entry on oeis.org

0, 1, 2, 4, 10, 20, 44, 88, 204, 440, 908, 1816, 3776, 7552, 15364, 31240, 63744, 127488, 257592, 515184, 1036336, 2079312, 4166408, 8332816, 16709632, 33470464, 66978208, 134067488, 268236928, 536473856, 1073233840, 2146467680, 4293851680, 8588355424, 17177430640
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Examples

			The a(0) = 0 through a(5) = 20 subsets:
  .  {1}  {1}    {1}      {1}        {1}
          {1,2}  {1,2}    {1,2}      {1,2}
                 {1,3}    {1,3}      {1,3}
                 {1,2,3}  {1,4}      {1,4}
                          {2,4}      {1,5}
                          {1,2,3}    {2,4}
                          {1,2,4}    {1,2,3}
                          {1,3,4}    {1,2,4}
                          {2,3,4}    {1,2,5}
                          {1,2,3,4}  {1,3,4}
                                     {1,3,5}
                                     {1,4,5}
                                     {2,3,4}
                                     {2,4,5}
                                     {1,2,3,4}
                                     {1,2,3,5}
                                     {1,2,4,5}
                                     {1,3,4,5}
                                     {2,3,4,5}
                                     {1,2,3,4,5}
		

Crossrefs

Multisets of this type are ranked by A355529, complement A368100.
For divisors instead of factors we have A355740, complement A368110.
The complement for set-systems is A367902, ranks A367906, unlabeled A368095.
The version for set-systems is A367903, ranks A367907, unlabeled A368094.
For non-isomorphic multiset partitions we have A368097, complement A368098.
The version for factorizations is A368413, complement A368414.
The complement is counted by A370582.
For a unique choice we have A370584.
Partial sums of A370587, complement A370586.
The minimal case is A370591.
The version for partitions is A370593, complement A370592.
For binary indices instead of factors we have A370637, complement A370636.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]

Formula

a(n) = 2^n - A370582(n).

Extensions

a(19)-a(34) from Alois P. Heinz, Feb 27 2024

A370820 Number of positive integers that are a divisor of some prime index of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 4, 3, 3, 1, 2, 2, 4, 2, 3, 2, 3, 2, 2, 4, 2, 3, 4, 3, 2, 1, 3, 2, 4, 2, 6, 4, 4, 2, 2, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 4, 5, 2, 3, 3, 4, 4, 2, 3, 6, 2, 3, 1, 4, 3, 2, 2, 4, 4, 6, 2, 4, 6, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This sequence contains all nonnegative integers. In particular, a(prime(n)!) = n.

Examples

			2045 has prime indices {3,80} with combined divisors {1,2,3,4,5,8,10,16,20,40,80}, so a(2045) = 11. In fact, 2045 is the least number with this property.
		

Crossrefs

a(prime(n)) = A000005(n).
Positions of ones are A000079 except for 1.
a(n!) = A000720(n).
a(prime(n)!) = a(prime(A005179(n))) = n.
Counting prime factors instead of divisors gives A303975.
Positions of 2's are A371127.
Position of first appearance of n is A371131(n), sorted version A371181.
A001221 counts distinct prime factors.
A003963 gives product of prime indices.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Union@@Divisors/@PrimePi/@First/@If[n==1,{},FactorInteger[n]]],{n,100}]
  • PARI
    a(n) = my(list=List(), f=factor(n)); for (i=1, #f~, fordiv(primepi(f[i,1]), d, listput(list, d))); #Set(list); \\ Michel Marcus, May 02 2024

A370585 Number of maximal subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 5, 7, 11, 25, 25, 38, 38, 84, 150, 178, 178, 235, 235, 341, 579, 1235, 1235, 1523, 1968, 4160, 4824, 6840, 6840, 9140, 9140, 10028, 16264, 33956, 48680, 56000, 56000, 116472, 186724, 223884, 223884, 290312, 290312, 403484, 484028, 1001420
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Comments

First differs from A307984 at a(21) = 579, A307984(21) = 578. The difference is due to the set {10,11,13,14,15,17,19,21}, which is not a basis because log(10) + log(21) = log(14) + log(15).
Also length-pi(n) subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Examples

			The a(0) = 1 through a(8) = 7 subsets:
  {}  {}  {2}  {2,3}  {2,3}  {2,3,5}  {2,3,5}  {2,3,5,7}  {2,3,5,7}
                      {3,4}  {3,4,5}  {2,5,6}  {2,5,6,7}  {2,5,6,7}
                                      {3,4,5}  {3,4,5,7}  {3,4,5,7}
                                      {3,5,6}  {3,5,6,7}  {3,5,6,7}
                                      {4,5,6}  {4,5,6,7}  {3,5,7,8}
                                                          {4,5,6,7}
                                                          {5,6,7,8}
		

Crossrefs

Multisets of this type are ranked by A368100, complement A355529.
Factorizations of this type are counted by A368414, complement A368413.
The version for set-systems is A368601, max of A367902 (complement A367903).
This is the maximal case of A370582, complement A370583, cf. A370584.
A different kind of maximality is A370586, complement A370587.
The case containing n is A370590, complement A370591.
Partitions of this type (choosable) are A370592, complement A370593.
For binary indices instead of factors we have A370640, cf. A370636, A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n], {PrimePi[n]}],Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025
Previous Showing 31-40 of 300 results. Next