cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A174781 Duplicate of A028846.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 14, 18, 21, 22, 24, 28, 41, 42, 44, 48, 81, 82, 84, 88, 111, 112, 114, 118, 121, 122, 124, 128, 141, 142, 144, 148, 181, 182, 184, 188, 211, 212, 214, 218, 221, 222, 224, 228, 241, 242, 244, 248, 281, 282, 284, 288
Offset: 1

Views

Author

Keywords

A276037 Numbers using only digits 1 and 5.

Original entry on oeis.org

1, 5, 11, 15, 51, 55, 111, 115, 151, 155, 511, 515, 551, 555, 1111, 1115, 1151, 1155, 1511, 1515, 1551, 1555, 5111, 5115, 5151, 5155, 5511, 5515, 5551, 5555, 11111, 11115, 11151, 11155, 11511, 11515, 11551, 11555, 15111, 15115, 15151, 15155, 15511, 15515
Offset: 1

Views

Author

Vincenzo Librandi, Aug 17 2016

Keywords

Comments

Numbers n such that product of digits of n is a power of 5.

Examples

			5551 is in the sequence because all of its digits are 1 or 5 and consequently because the product of digits, 5*5*5*1 = 125 = 5^3 is a power of 5.
		

Crossrefs

Cf. numbers n such that product of digits of n is a power of k: A028846 (k=2), A174813 (k=3), this sequence (k=5), A276038 (k=6), A276039 (k=7).
Cf. A199985 (a subsequence).

Programs

  • Magma
    [n: n in [1..20000] | Set(Intseq(n)) subset {1, 5}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    S[0]:= [0]:
    for d from 1 to 6 do S[d]:= map(t -> (10*t+1, 10*t+5), S[d-1]) od:
    seq(op(S[d]),d=1..6); # Robert Israel, Aug 22 2016
  • Mathematica
    Select[Range[20000], IntegerQ[Log[5, Times@@(IntegerDigits[#])]]&]
  • PARI
    a(n) = my(v=[1,5], b=binary(n+1), d=vector(#b-1,i, v[b[i+1]+1])); sum(i=1, #d, d[i] * 10^(#d-i)) \\ David A. Corneth, Aug 22 2016
  • Python
    from itertools import product
    A276037_list = [int(''.join(d)) for l in range(1,10) for d in product('15',repeat=l)] # Chai Wah Wu, Aug 18 2016
    
  • Python
    def A276037(n): return (int(bin(n+1)[3:])<<2)+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025
    

Formula

From Robert Israel, Aug 22 2016: (Start)
a(2n+1) = 10 a(n) + 1.
a(2n+2) = 10 a(n) + 5.
G.f. g(x) satisfies g(x) = 10 (x + x^2) g(x^2) + (x + 5 x^2)/(1 - x^2). (End)

Extensions

Example changed by David A. Corneth, Aug 22 2016

A174813 a(n) = number whose product of digits equals a power of 3.

Original entry on oeis.org

1, 3, 9, 11, 13, 19, 31, 33, 39, 91, 93, 99, 111, 113, 119, 131, 133, 139, 191, 193, 199, 311, 313, 319, 331, 333, 339, 391, 393, 399, 911, 913, 919, 931, 933, 939, 991, 993, 999, 1111, 1113, 1119, 1131, 1133, 1139, 1191, 1193, 1199, 1311, 1313, 1319, 1331
Offset: 1

Views

Author

Michel Lagneau, Dec 01 2010

Keywords

Comments

Equivalently, numbers whose decimal representation consists of digits from the set {1,3,9}.

Examples

			a(9)=39 is in the sequence because 3*9=3^3.
		

Crossrefs

Programs

  • Haskell
    a174813 n = a174813_list !! (n-1)
    a174813_list = f [1] where
       f ds = foldr (\d v -> 10 * v + d) 0 ds : f (s ds)
       s [] = [1]; s (9:ds) = 1 : s ds; s (d:ds) = 3*d : ds
    -- Reinhard Zumkeller, Jan 13 2014
    
  • Mathematica
    Select[Range[2000], IntegerQ[Log[3, Times @@ (IntegerDigits[#])]] &]
  • Python
    from sympy import integer_log
    def A174813(n):
        m = integer_log(k:=(n<<1)+1,3)[0]
        return sum(3**((k-3**m)//(3**j<<1)%3)*10**j for j in range(m)) # Chai Wah Wu, Jun 28 2025

A061426 Geometric mean of the digits = 2. In other words, the product of the digits is = 2^k where k is the number of digits.

Original entry on oeis.org

2, 14, 22, 41, 118, 124, 142, 181, 214, 222, 241, 412, 421, 811, 1128, 1144, 1182, 1218, 1224, 1242, 1281, 1414, 1422, 1441, 1812, 1821, 2118, 2124, 2142, 2181, 2214, 2222, 2241, 2412, 2421, 2811, 4114, 4122, 4141, 4212, 4221, 4411, 8112, 8121, 8211
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			124 is a term as the geometric mean of digits is (1*2*4) = 8 = 2^3.
		

Crossrefs

Cf. A061427-A061430. A069512 gives another version.
Cf. A028846.

Programs

  • Haskell
    a061426 n = a061426_list !! (n-1)
    a061426_list = g [1] where
       g ds = if product ds == 2 ^ length ds
              then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds)
       s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds
    -- Reinhard Zumkeller, Jan 13 2014

Extensions

More terms from Erich Friedman, May 08 2001

A028838 Numbers whose sum of digits is a power of 2.

Original entry on oeis.org

1, 2, 4, 8, 10, 11, 13, 17, 20, 22, 26, 31, 35, 40, 44, 53, 62, 71, 79, 80, 88, 97, 100, 101, 103, 107, 110, 112, 116, 121, 125, 130, 134, 143, 152, 161, 169, 170, 178, 187, 196, 200, 202, 206, 211, 215, 220, 224, 233, 242, 251, 259, 260, 268, 277, 286, 295, 301, 305, 310, 314, 323, 332, 341
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [k: k in [2..341] | PrimeDivisors(&+Intseq(k)) eq [2] or &+Intseq(k) eq 1]; // Marius A. Burtea, Jun 11 2019
    
  • Mathematica
    Select[Range[400],IntegerQ[Log2[Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, Jul 22 2023 *)
  • PARI
    ispp(n) = (n==1) || (isprimepower(n, &p) && (p==2));
    isok(n) = ispp(sumdigits(n)); \\ Michel Marcus, Jun 11 2019

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008

A328560 Numbers whose product of digits is a power of 10.

Original entry on oeis.org

1, 11, 25, 52, 111, 125, 152, 215, 251, 455, 512, 521, 545, 554, 1111, 1125, 1152, 1215, 1251, 1455, 1512, 1521, 1545, 1554, 2115, 2151, 2255, 2511, 2525, 2552, 4155, 4515, 4551, 5112, 5121, 5145, 5154, 5211, 5225, 5252, 5415, 5451, 5514, 5522, 5541, 5558, 5585
Offset: 1

Views

Author

Keywords

Comments

All terms must have only 1, 2, 4, 5, 8 as digits.
A subsequence of A328095.

Crossrefs

Programs

  • Maple
    q:= n-> (m-> m>0 and m=10^ilog[10](m))(mul(i, i=convert(n, base, 10))):
    select(q, [$1..6000])[];

A284295 Numbers n such that product of digits of n is a power of 9.

Original entry on oeis.org

1, 9, 11, 19, 33, 91, 99, 111, 119, 133, 191, 199, 313, 331, 339, 393, 911, 919, 933, 991, 999, 1111, 1119, 1133, 1191, 1199, 1313, 1331, 1339, 1393, 1911, 1919, 1933, 1991, 1999, 3113, 3131, 3139, 3193, 3311, 3319, 3333, 3391, 3399, 3913, 3931, 3939, 3993
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Supersequence of A284294.

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 9^0.
		

Crossrefs

Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), this sequence (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 9^k]))
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 3, 9}, #] &, Range@ 4], IntegerQ@ Log[9, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A284324 Numbers k such that product of digits of k is a power of 8.

Original entry on oeis.org

1, 8, 11, 18, 24, 42, 81, 88, 111, 118, 124, 142, 181, 188, 214, 222, 241, 248, 284, 412, 421, 428, 444, 482, 811, 818, 824, 842, 881, 888, 1111, 1118, 1124, 1142, 1181, 1188, 1214, 1222, 1241, 1248, 1284, 1412, 1421, 1428, 1444, 1482, 1811, 1818, 1824, 1842
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Comments

There are (2 + 4^d)/3 terms with d digits, for each d >= 1. - Robert Israel, Mar 31 2017

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 8^0.
		

Crossrefs

Supersequence of A213084.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), this sequence (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 8^k]));
  • Maple
    dmax:= 4: # to get all terms with at most dmax digits
    B[0,1]:= {1,8}:
    B[1,1]:= {2}:
    B[2,1]:= {4}:
    for d from 2 to dmax do
      for j from 0 to 2 do
        B[j,d]:= map(t -> (10*t+1,10*t+8), B[j,d-1])
            union map(t -> 10*t+4, B[(j+1) mod 3, d-1])
            union map(t->10*t+2, B[(j+2) mod 3, d-1])
    od od:
    seq(op(sort(convert(B[0,d],list))),d=1..dmax); # Robert Israel, Mar 31 2017

A284375 Numbers whose product of digits is a power of 0.

Original entry on oeis.org

0, 1, 10, 11, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Examples

			111 is in the sequence because 1*1*1 = 1 = 0^0.
		

Crossrefs

Union of A011540 and A002275. Supersequence of A007088.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: this sequence (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9), A328560 (k = 10).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 0^k]));
  • Mathematica
    Select[Range[0, 500], Times@@ IntegerDigits[#] <2 &] (* Indranil Ghosh, Mar 26 2017 *)

A061428 Geometric mean of the digits = 4. In other words, the product of the digits is = 4^k where k is the number of digits.

Original entry on oeis.org

4, 28, 44, 82, 188, 248, 284, 428, 444, 482, 818, 824, 842, 881, 1488, 1848, 1884, 2288, 2448, 2484, 2828, 2844, 2882, 4188, 4248, 4284, 4428, 4444, 4482, 4818, 4824, 4842, 4881, 8148, 8184, 8228, 8244, 8282, 8418, 8424, 8442, 8481, 8814, 8822, 8841, 12888
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			248 is a term as the geometric mean of digits is (2*4*8) = 64 = 4^3.
		

Crossrefs

Programs

  • Haskell
    a061428 n = a061428_list !! (n-1)
    a061428_list = g [1] where
       g ds = if product ds == 4 ^ length ds
              then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds)
       s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds
    -- Reinhard Zumkeller, Jan 13 2014
    
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations, multiset_permutations
    def auptod(maxdigits):
      n, digs, alst, powsexps2 = 0, 1, [], [(1, 0), (2, 1), (4, 2), (8, 3)]
      for digs in range(1, maxdigits+1):
        target, okdigs = 4**digs, set()
        mcstr = "".join(str(d)*(digs//max(1, r//2)) for d, r in powsexps2)
        for mc in multiset_combinations(mcstr, digs):
          if prod(map(int, mc)) == target:
            n += 1
            okdigs |= set("".join(mp) for mp in multiset_permutations(mc, digs))
        alst += sorted(map(int, okdigs))
      return alst
    print(auptod(4)) # Michael S. Branicky, Apr 28 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Showing 1-10 of 19 results. Next