cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A118959 Non-palindromic numbers which are divisible by their reversal.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 200, 220, 300, 330, 400, 440, 500, 510, 540, 550, 600, 660, 700, 770, 800, 810, 880, 900, 990, 1000, 1010, 1100, 1110, 1210, 1310, 1410, 1510, 1610, 1710, 1810, 1910, 2000, 2020, 2100, 2120, 2200, 2220, 2320, 2420
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 25 2006

Keywords

Comments

A004086(a(n)) = A027751(a(n),k) for some k: 1 <= k < A001221(n); A031877 contains all terms not ending with zero. - Reinhard Zumkeller, Jul 15 2013

Examples

			510 is in the sequence because 510 is a non-palindromic number divisible by its reversal 15.
		

Crossrefs

Subsequence of A029742; A031877 is a subsequence.

Programs

  • Haskell
    a118959 n = a118959_list !! (n-1)
    a118959_list = filter
       (\x -> let x' = a004086 x in x' /= x && x `mod` x' == 0) [1..]
    -- Reinhard Zumkeller, Jul 15 2013
  • Mathematica
    Select[Range[2420],!PalindromeQ[#]&&Divisible[#,IntegerReverse[#]]&] (* James C. McMahon, Sep 13 2024 *)

A319388 Non-palindromic squares.

Original entry on oeis.org

16, 25, 36, 49, 64, 81, 100, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 529, 576, 625, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025
Offset: 1

Views

Author

Seiichi Manyama, Sep 18 2018

Keywords

Comments

Intersection of A000290 and A029742. - Felix Fröhlich, Sep 18 2018

Crossrefs

Programs

  • Magma
    [n^2: n in [0..60] | not Intseq(n^2) eq Reverse(Intseq(n^2))]; // Vincenzo Librandi, Sep 19 2018
  • Maple
    ispali:= proc(n) local L;
    L:= convert(n,base,10);
    L = ListTools:-Reverse(L)
    end proc:
    remove(ispali, [seq(i^2,i=1..100)]); # Robert Israel, Sep 18 2018
  • Mathematica
     pb10Q[n_]:=!Module[{idn10=IntegerDigits[n, 10]}, idn10==Reverse[idn10]]; Select[Range[0, 3100]^2, pb10Q] (* Vincenzo Librandi, Sep 19 2018 *)
  • PARI
    terms(n) = my(i=0); for(k=0, oo, if(i==n, break); my(s=k^2, d=digits(s)); if(d!=Vecrev(d), print1(s, ", "); i++))
    /* Print initial 50 terms as follows */
    terms(50) \\ Felix Fröhlich, Sep 18 2018
    

A334391 Numbers whose only palindromic divisor is 1.

Original entry on oeis.org

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 169, 173, 179, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 299, 307
Offset: 1

Views

Author

Bernard Schott, Apr 26 2020

Keywords

Comments

Equivalent: Numbers such that the LCM of their palindromic divisors (A087999) is 1, or,
Numbers such that the number of palindromic divisors (A087990) is 1.
All terms are odd.
The 1st family consists of non-palindromic primes that form the subsequence A334321.
The 2nd family consists of {p^k, p prime, k >= 2} such that p^j for 1 <= j <= k is not a palindrome {169 = 13^2, 289 = 17^2, 361 = 19^2, ..., 2197 = 13^3, ...} (see examples).
The 3rd family consists of products p_1^q_1 * ... * p_k^q_k with k >= 2, all of whose divisors are nonpalindromic {221 = 13 * 27, 247 = 13 * 19, 299 = 13 * 23, 377 = 13 * 29, 391 = 17 * 23, 403 = 13 * 31, 481 = 13 * 37, ...}.
Also, equivalent: numbers all of whose divisors > 1 are nonpalindromic (A029742). - Bernard Schott, Jul 14 2022

Examples

			49 = 7^2, the divisor 7 is a palindrome so 49 is not a term.
169 = 13^2, divisors of 169 are {1, 13, 169} and 169 is a term.
391 = 17*23, divisors of 391 are {1,17,23,391} and 391 is a term.
307^2 = 94249 that is palindrome, so 94249 is not a term.
		

Crossrefs

A334321 is a subsequence.

Programs

  • Maple
    notpali:= proc(n) local L;
      L:= convert(n,base,10);
      L <> ListTools:-Reverse(L)
    end proc:
    filter:= proc(n) option remember; andmap(notpali,numtheory:-divisors(n) minus {1}) end proc:
    select(filter, [seq(i,i=1..400,2)]); # Robert Israel, Apr 28 2020
  • Mathematica
    Select[Range[300], !AnyTrue[Rest @ Divisors[#], PalindromeQ] &] (* Amiram Eldar, Apr 26 2020 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(n) = fordiv(n, d, if (d>1 && ispal(d), return(0))); return(1); \\ Michel Marcus, Apr 26 2020
    
  • Python
    from sympy.ntheory import divisors, is_palindromic
    def ok(n): return not any(is_palindromic(d) for d in divisors(n)[1:])
    print(list(filter(ok, range(1, 308, 2)))) # Michael S. Branicky, May 08 2021

Formula

A087990(a(n)) = 1.
A087999(a(n)) = 1.

A338039 Numbers m such that A338038(m) = A338038(A004086(m)) where A004086(i) is i read backwards and A338038(i) is the sum of the primes and exponents in the prime factorization of i ignoring 1-exponents; palindromes and multiples of 10 are excluded.

Original entry on oeis.org

18, 81, 198, 576, 675, 819, 891, 918, 1131, 1304, 1311, 1818, 1998, 2262, 2622, 3393, 3933, 4031, 4154, 4514, 4636, 6364, 8181, 8749, 8991, 9478, 12441, 14269, 14344, 14421, 15167, 15602, 16237, 18018, 18449, 18977, 19998, 20651, 23843, 24882, 26677, 26892, 27225
Offset: 1

Views

Author

Michel Marcus, Oct 08 2020

Keywords

Comments

Palindromes (A002113) are excluded from the sequence because they obviously satisfy the condition.
Sequence is infinite since it includes 18, 1818, 181818, .... See link.
There are many cases of terms that are the repeated concatenation of integers like: 1818, 8181, 181818, ... , but also 131313131313131313131313131313 and more. See A338166.
If n is in the sequence and has d digits, and gcd(n, x) = gcd(A004086(n), x) where x = (10^((k+1)*d)-1)/(10^d-1), then the concatenation of k copies of n is also in the sequence. - Robert Israel, Oct 13 2020

Examples

			For m = 18 = 2*3^2, A338038(18) = 2 + (3+2) = 7 and for m = 81 = 3^4, A338038(81) = 7, so 18 and 81 are terms.
		

Crossrefs

Cf. A004086 (read n backwards), A002113, A029742 (non-palindromes), A338038, A338166.

Programs

  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    g:= proc(n) local t;
      add(t[1]+t[2],t=subs(1=0,ifactors(n)[2]))
    end proc:
    filter:= proc(n) local r;
      if n mod 10 = 0 then return false fi;
      r:= rev(n);
      r <> n and g(r)=g(n)
    end proc:
    select(filter, [$1..30000]); # Robert Israel, Oct 13 2020
  • Mathematica
    s[1] = 0; s[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; Select[Range[30000], !Divisible[#, 10] && (r = IntegerReverse[#]) != # &&  s[#] == s[r] &] (* Amiram Eldar, Oct 08 2020 *)
  • PARI
    f(n) = my(f=factor(n)); vecsum(f[,1]) + sum(k=1, #f~, if (f[k,2]!=1, f[k,2])); \\ A338038
    isok(m) = my(r=fromdigits(Vecrev(digits(m)))); (m % 10) && (m != r) && (f(r) == f(m));

A280824 Numbers with an even number of digits and with an even number of distinct digits.

Original entry on oeis.org

10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 1000, 1001, 1010
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 08 2017

Keywords

Comments

Differs from A139819 (the latter contains 100, for example). - R. J. Mathar, Jan 17 2017

Crossrefs

Programs

  • Maple
    isA280824 := proc(n)
        if n < 10 then
            return false;
        end if;
        dgs := convert(n,base,10) ;
        if type(nops(dgs),'even') then
            type(nops(convert(dgs,set)),'even') ;
        else
            false;
        end if;
    end proc: # R. J. Mathar, Jan 17 2017
  • Mathematica
    Select[Range[1010], Mod[Length[IntegerDigits[#1]], 2] == 0 && Mod[Length[Union[IntegerDigits[#1]]], 2] == 0 & ]
  • Python
    def ok(n): s = str(n); return len(s)%2 == 0 == len(set(s))%2
    print(list(filter(ok, range(1011)))) # Michael S. Branicky, Oct 12 2021

Formula

A000035(A055642(a(n))) = 0.
A000035(A043537(a(n))) = 0.
a(n) = A029742(n) for n < 82.

A350867 Non-palindromic numbers k for which d(k) = d(R(k)), where R(k) is the reversal of k and d(k) is the number of divisors of k.

Original entry on oeis.org

13, 15, 17, 24, 26, 31, 37, 39, 42, 51, 58, 62, 71, 73, 79, 85, 93, 97, 107, 113, 115, 117, 122, 123, 129, 143, 149, 155, 157, 158, 159, 165, 167, 169, 177, 178, 179, 183, 185, 187, 199, 203, 205, 221, 226, 246, 264, 265, 285, 286, 288, 294, 302, 311, 314, 319
Offset: 1

Views

Author

Daniel Tsai, Feb 18 2022

Keywords

Examples

			264 and 462 are non-palindromic and also d(264) = 16 = d(462), and so both are members.
		

Crossrefs

Cf. A000005 (d), A004086 (R).
Intersection of A029742 (non-palindromes) and A062895 (d(R(k)) = d(k)).

Programs

  • PARI
    isok(k) = my(R = fromdigits(Vecrev(digits(k)))); R != k && numdiv(R) == numdiv(k);
    
  • Python
    from sympy import divisor_count as d
    def ok(k): Rk = int(str(k)[::-1]); return Rk != k and d(k) == d(Rk)
    print([k for k in range(320) if ok(k)]) # Michael S. Branicky, Feb 20 2022

A048344 a(n) * a(n)_reversed is a palindrome (and a(n) is not palindromic).

Original entry on oeis.org

12, 21, 102, 112, 122, 201, 211, 221, 1002, 1011, 1012, 1021, 1022, 1101, 1102, 1112, 1121, 1201, 1202, 1211, 2001, 2011, 2012, 2021, 2101, 2102, 2111, 2201, 10002, 10011, 10012, 10021, 10022, 10102, 10111, 10112, 10121, 10202, 10211, 11001
Offset: 1

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Comments

Does any term in this sequence have any digit greater than 2? - Harvey P. Dale, Nov 05 2011

Examples

			E.g. 10021 * 12001 = 120262021 is a palindrome.
		

Crossrefs

Programs

  • Haskell
    a048344 n = a048344_list !! (n-1)
    a048344_list = filter f a029742_list where
       f x = a136522 (x * a004086 x) == 1
    -- Reinhard Zumkeller, Oct 09 2011
    
  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n],ridn,idn2},ridn=Reverse[idn]; idn2 = IntegerDigits[ n FromDigits[ridn]];idn!=ridn&&idn2==Reverse[idn2]]; Select[ Range[11100],palQ] (* Harvey P. Dale, Nov 05 2011 *)
    Select[Range[12000],!PalindromeQ[#]&&PalindromeQ[# IntegerReverse[#]]&] (* Harvey P. Dale, Jul 10 2023 *)
  • Python
    A048344_list = []
    for n in range(1,10**5):
        s = str(n)
        s2 = str(n)[::-1]
        if s != s2:
            s3 = str(n*int(s2))
            if s3 == s3[::-1]:
                A048344_list.append(n) # Chai Wah Wu, Sep 08 2014

Extensions

Offset corrected by Reinhard Zumkeller, Oct 09 2011

A334321 Non-palindromic primes.

Original entry on oeis.org

13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 317, 331, 337, 347, 349
Offset: 1

Views

Author

Bernard Schott, Apr 23 2020

Keywords

Comments

Not the same as A052085, primes whose decimal digits are grouped together: 2, 3, 5, 7, 11 are not terms of this sequence, then the next difference occurs for prime 1013 that belongs to this sequence but not to A052085.

Examples

			97 is prime and is not a palindrome, hence 97 belongs to this sequence.
		

Crossrefs

Equals A000040 \ A002385.
Intersection of A029742 and A000040.

Programs

  • Mathematica
    Select[Range[350], PrimeQ[#] && !PalindromeQ[#] &] (* Amiram Eldar, Apr 23 2020 *)
  • PARI
    isok(p) = if (isprime(p), my(d=digits(p)); d != Vecrev(d)); \\ Michel Marcus, Apr 23 2020

Formula

Formula : A087999(a(n)) = 1.

A339676 Nonpalindromic numbers that are products of repunits.

Original entry on oeis.org

161051, 1490841, 1625151, 1771561, 14921841, 15043941, 16266151, 16399251, 17876661, 19487171, 137009631, 149231841, 149352841, 150574941, 151807041, 162676151, 164140251, 165483351, 178927661, 180391761, 196643271, 214358881, 1370219631, 1371330631, 1492331841
Offset: 1

Views

Author

Bernard Schott, Dec 12 2020

Keywords

Comments

The first term is A308365(19).
G. J. Simmons conjectured there are no palindromes of form n^k for k >= 5 (and n > 1) (see link, page 98). According to this conjecture, these perfect powers are terms: {11^k, k>=4}, {111^k, k>=4}, {1111^k, k>=3}, {11111^k, k>=3}, ...

Examples

			a(1) = 161051 = 11^5.
a(2) = 1490841 = 11^2 * 111^2.
a(3) = 1625151 = 11^4 * 111.
a(4) = 1771561 = 11^6.
a(5) = 14921841 = 11^2 * 111 * 1111.
		

Crossrefs

Intersection of A308365 and A029742.

Programs

  • Mathematica
    vec[max_] := Module[{m = Floor @ Log10[9*max + 1], r, s = {1}, s1}, r = (10^Range[2, m] - 1)/9; Do[emax = Floor@Log[r[[k]], max]; s1 = r[[k]]^Range[0, emax]; s = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &], {k, 1, m - 1}]; s]; Select[vec[1.5*10^9], !PalindromeQ[#] &] (* Amiram Eldar, Dec 12 2020 *)

A154810 Nonpalindromic numbers with binary digits only.

Original entry on oeis.org

10, 100, 110, 1000, 1010, 1011, 1100, 1101, 1110, 10000, 10010, 10011, 10100, 10110, 10111, 11000, 11001, 11010, 11100, 11101, 11110, 100000, 100010, 100011, 100100, 100101, 100110, 100111, 101000, 101001, 101010, 101011, 101100, 101110, 101111
Offset: 1

Views

Author

Omar E. Pol, Jan 24 2009

Keywords

Comments

A154809 written in base 2.

Crossrefs

Programs

  • Mathematica
    Map[FromDigits, Select[IntegerDigits[Range[50], 2], !PalindromeQ[#] &]] (* Paolo Xausa, Jul 24 2024 *)
  • Python
    def A154810(n):
        def f(x): return n+(x>>(l:=x.bit_length())-(k:=l+1>>1))-(int(bin(x)[k+1:1:-1],2)>(x&(1<Chai Wah Wu, Jul 24 2024

Formula

a(n) = A007088(A154809(n)). - Michel Marcus, Jul 24 2024

Extensions

Extended by Ray Chandler, Mar 14 2010
Previous Showing 11-20 of 33 results. Next