cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A195040 Square array read by antidiagonals with T(n,k) = k*n^2/4+(k-4)*((-1)^n-1)/8, n>=0, k>=0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 0, 7, 8, 7, 4, 1, 0, 1, 9, 13, 12, 9, 5, 1, 0, 0, 13, 18, 19, 16, 11, 6, 1, 0, 1, 16, 25, 27, 25, 20, 13, 7, 1, 0, 0, 21, 32, 37, 36, 31, 24, 15, 8, 1, 0, 1, 25, 41, 48, 49, 45, 37, 28, 17, 9, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also, if k >= 2 and m = 2*k, then column k lists the numbers of the form k*n^2 and the centered m-gonal numbers interleaved.
For k >= 3, this is also a table of concentric polygonal numbers. Column k lists the concentric k-gonal numbers.
It appears that the first differences of column k are the numbers that are congruent to {1, k-1} mod k, if k >= 3.

Examples

			Array begins:
  0,   0,   0,   0,   0,   0,   0,   0,   0,   0, ...
  1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5,   6,   7,   8,   9, ...
  1,   3,   5,   7,   9,  11,  13,  15,  17,  19, ...
  0,   4,   8,  12,  16,  20,  24,  28,  32,  36, ...
  1,   7,  13,  19,  25,  31,  37,  43,  49,  55, ...
  0,   9,  18,  27,  36,  45,  54,  63,  72,  81, ...
  1,  13,  25,  37,  49,  61,  73,  85,  97, 109, ...
  0,  16,  32,  48,  64,  80,  96, 112, 128, 144, ...
  1,  21,  41,  61,  81, 101, 121, 141, 161, 181, ...
  0,  25,  50,  75, 100, 125, 150, 175, 200, 225, ...
  ...
		

Crossrefs

Rows n: A000004 (n=0), A000012 (n=1), A001477 (n=2), A005408 (n=3), A008586 (n=4), A016921 (n=5), A008591 (n=6), A017533 (n=7), A008598 (n=8), A215145 (n=9), A008607 (n=10).
Columns k: A000035 (k=0), A004652 (k=1), A000982 (k=2), A077043 (k=3), A000290 (k=4), A032527 (k=5), A032528 (k=6), A195041 (k=7), A077221 (k=8), A195042 (k=9), A195142 (k=10), A195043 (k=11), A195143 (k=12), A195045 (k=13), A195145 (k=14), A195046 (k=15), A195146 (k=16), A195047 (k=17), A195147 (k=18), A195048 (k=19), A195148 (k=20), A195049 (k=21), A195149 (k=22), A195058 (k=23), A195158 (k=24).

Programs

  • GAP
    nmax:=13;; T:=List([0..nmax],n->List([0..nmax],k->k*n^2/4+(k-4)*((-1)^n-1)/8));; b:=List([2..nmax],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Jul 19 2018
  • Maple
    A195040 := proc(n,k)
            k*n^2/4+((-1)^n-1)*(k-4)/8 ;
    end proc:
    for d from 0 to 12 do
            for k from 0 to d do
                    printf("%d,",A195040(d-k,k)) ;
            end do:
    end do; # R. J. Mathar, Sep 28 2011
  • Mathematica
    t[n_, k_] := k*n^2/4+(k-4)*((-1)^n-1)/8; Flatten[ Table[ t[n-k, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011 *)

A195143 a(n) = n-th concentric 12-gonal number.

Original entry on oeis.org

0, 1, 12, 25, 48, 73, 108, 145, 192, 241, 300, 361, 432, 505, 588, 673, 768, 865, 972, 1081, 1200, 1321, 1452, 1585, 1728, 1873, 2028, 2185, 2352, 2521, 2700, 2881, 3072, 3265, 3468, 3673, 3888, 4105, 4332, 4561, 4800, 5041, 5292, 5545, 5808, 6073, 6348
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric dodecagonal numbers. [corrected by Ivan Panchenko, Nov 09 2013]
Sequence found by reading the line from 0, in the direction 0, 12,..., and the same line from 1, in the direction 1, 25,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Main axis, perpendicular to A028896 in the same spiral.
Partial sums of A091998. - Reinhard Zumkeller, Jan 07 2012
Column 12 of A195040. - Omar E. Pol, Sep 28 2011

Crossrefs

A135453 and A069190 interleaved.
Cf. A016921 (6n+1), A016969 (6n+5), A091998 (positive integers of the form 12*k +- 1), A092242 (positive integers of the form 12*k +- 5).

Programs

  • Haskell
    a195143 n = a195143_list !! n
    a195143_list = scanl (+) 0 a091998_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(3*n^2+(-1)^n-1): n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    Table[Sum[2*(-1)^(n - k + 1) + 6*k - 3, {k, n}], {n, 0, 47}] (* L. Edson Jeffery, Sep 14 2014 *)

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 3*n^2+(-1)^n-1.
a(n) = -a(n-1) + 6*n^2 - 6*n + 1. (End)
G.f.: -x*(1+10*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = Sum_{k=1..n} (2*(-1)^(n-k+1) + 3*(2*k-1)), n>0, a(0) = 0. - L. Edson Jeffery, Sep 14 2014
Sum_{n>=1} 1/a(n) = Pi^2/72 + tan(Pi/sqrt(6))*Pi/(4*sqrt(6)). - Amiram Eldar, Jan 16 2023

A195145 Concentric 14-gonal numbers.

Original entry on oeis.org

0, 1, 14, 29, 56, 85, 126, 169, 224, 281, 350, 421, 504, 589, 686, 785, 896, 1009, 1134, 1261, 1400, 1541, 1694, 1849, 2016, 2185, 2366, 2549, 2744, 2941, 3150, 3361, 3584, 3809, 4046, 4285, 4536, 4789, 5054, 5321, 5600, 5881, 6174, 6469, 6776, 7085, 7406
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Also concentric tetradecagonal numbers or concentric tetrakaidecagonal numbers. Also sequence found by reading the line from 0, in the direction 0, 14, ..., and the same line from 1, in the direction 1, 29, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Main axis, perpendicular to A024966 in the same spiral.
Partial sums of A113801. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195145 n = a195145_list !! n
    a195145_list = scanl (+) 0 a113801_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(14*n^2+5*(-1)^n-5)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 1, 14, 29}, 50] (* Amiram Eldar, Jan 16 2023 *)

Formula

G.f.: -x*(1+12*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (14*n^2 + 5*(-1)^n - 5)/4;
a(n) = a(-n) = -a(n-1) + 7*n^2 - 7*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/84 + tan(sqrt(5/7)*Pi/2)*Pi/(2*sqrt(35)). - Amiram Eldar, Jan 16 2023
E.g.f.: (7*x*(x + 1)*cosh(x) + (7*x^2 + 7*x - 5)*sinh(x))/2. - Stefano Spezia, Nov 30 2024

A195149 Concentric 22-gonal numbers.

Original entry on oeis.org

0, 1, 22, 45, 88, 133, 198, 265, 352, 441, 550, 661, 792, 925, 1078, 1233, 1408, 1585, 1782, 1981, 2200, 2421, 2662, 2905, 3168, 3433, 3718, 4005, 4312, 4621, 4950, 5281, 5632, 5985, 6358, 6733, 7128, 7525, 7942, 8361, 8800, 9241, 9702, 10165, 10648, 11133
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 22,..., and the same line from 1, in the direction 1, 45,..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Main axis, perpendicular to A152740 in the same spiral.

Crossrefs

A195323 and A195318 interleaved.
Cf. A032527, A195049, A195058. Column 22 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

G.f.: -x*(1+20*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = (22*n^2+9*(-1)^n-9)/4; a(n) = -a(n-1)+11*n^2-11*n+1. - Vincenzo Librandi, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/132 + tan(3*Pi/(2*sqrt(11)))*Pi/(6*sqrt(11)). - Amiram Eldar, Jan 17 2023
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Wesley Ivan Hurt, Jun 19 2025

A011934 a(n) = |1^3 - 2^3 + 3^3 - 4^3 + ... + (-1)^(n+1)*n^3|.

Original entry on oeis.org

0, 1, 7, 20, 44, 81, 135, 208, 304, 425, 575, 756, 972, 1225, 1519, 1856, 2240, 2673, 3159, 3700, 4300, 4961, 5687, 6480, 7344, 8281, 9295, 10388, 11564, 12825, 14175, 15616, 17152, 18785, 20519, 22356, 24300, 26353, 28519, 30800, 33200, 35721, 38367, 41140
Offset: 0

Views

Author

David Penney (david(AT)math.uga.edu)

Keywords

Comments

From the formula a(n) = n^3 - a(n-1) it follows that a(n-1) + a(n) = n^3. Thus the sum of two consecutive terms (call them the "former" and "latter" terms) is a cube of the index of the "latter" term. - Alexander R. Povolotsky, Jan 09 2008
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) (A153641) 2^(-n-1)*(P(n,1)-(-1)^k P(n,2*k+1)). Thus we get expression a(k) = |2^(-4)*(P(3,1)-(-1)^k P(3,2*k+1))|. - Peter Luschny, Jul 12 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w < floor((x+y)/2). Also, the number of (w,x,y) having all terms in {0,...,n} and w >= floor((x+y)/2). - Clark Kimberling, Jun 02 2012

References

Crossrefs

Programs

  • Magma
    [((2*n+3)*n^2 - (n mod 2))/4: n in [0..100]]; // G. C. Greubel, Nov 03 2024
    
  • Maple
    a := n -> ((2*n+3)*n^2-(n mod 2))/4; # Peter Luschny, Jul 12 2009
  • Mathematica
    Table[(4*n^3 -6*n^2 +1-(-1)^n)/8, {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    Abs[Accumulate[Times@@@Partition[Riffle[Range[0,50]^3,{1,-1},{1,-1,2}],2]]] (* Harvey P. Dale, May 20 2019 *)
  • SageMath
    [((2*n+3)*n^2 - (n%2))//4 for n in range(101)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = |(1/8)*(-1 + (-1)^n - 6*(-1)^n*n^2 - 4*(-1)^n*n^3)|. - Henry Bottomley, Nov 13 2000
a(n) = n^3 - a(n-1) = a(n-1) + A032528(n) = ceiling(A015238(n+1)/4) = ceiling((n+1)^2*(2*n-1)/4). - Henry Bottomley, Nov 13 2000
G.f.: x*(1 + 4*x + x^2)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5). - Alexander R. Povolotsky, Apr 26 2008
a(n) = Sum_{k=1..n} floor((2*n+1)*k/2). - Wesley Ivan Hurt, Apr 01 2017

Extensions

More terms from Henry Bottomley, Nov 13 2000

A140811 a(n) = 6*n^2 - 1.

Original entry on oeis.org

-1, 5, 23, 53, 95, 149, 215, 293, 383, 485, 599, 725, 863, 1013, 1175, 1349, 1535, 1733, 1943, 2165, 2399, 2645, 2903, 3173, 3455, 3749, 4055, 4373, 4703, 5045, 5399, 5765, 6143, 6533, 6935, 7349, 7775, 8213, 8663, 9125, 9599, 10085, 10583, 11093, 11615
Offset: 0

Views

Author

Paul Curtz, Jul 16 2008

Keywords

Comments

Also: The numerators in the j=2 column of the array a(i,j) defined in A140825, where the columns j=0 and j=1 are represented by A000012 and A005408. This could be extended to column j=3: 1, -1, 9, 55, 161, ... The common feature of these sequences derived from a(i,j) is that their j-th differences are constant sequences defined by A091137(j).
a(n) is the set of all k such that 6*k + 6 is a perfect square. - Gary Detlefs, Mar 04 2010
The identity (6*n^2 - 1)^2 - (9*n^2 - 3)*(2*n)^2 = 1 can be written as a(n+1)^2 - A157872(n)*A005843(n+1)^2 = 1. - Vincenzo Librandi, Feb 05 2012
Apart from first term, sequence found by reading the line from 5, in the direction 5, 23, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
From Paul Curtz, Sep 17 2018: (Start)
Terms from center to right in the following spiral:
.
65--63--61--59
/ \
67 31--29--27 57
/ / \ \
69 33 9---7 25 55
/ / / \ \ \
71 35 11 -1===5==23==53==>
/ / / / / /
37 13 1---3 21 51
\ \ / /
39 15--17--19 49
\ /
41--43--45--47 (End)

References

  • P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Note 12, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969, 132 pages, pp. 28-36. CCSA, then CELAR. Now DGA Maitrise de l'Information 35131 Bruz.

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) + 12.
First differences: a(n+1) - a(n) = A017593(n).
Second differences: A071593(n+1) - A071593(n) = 12.
G.f.: (1-8*x-5*x^2)/(x-1)^3. - Jaume Oliver Lafont, Aug 30 2009
From Vincenzo Librandi, Feb 05 2012: (Start)
a(n) = a(n-1) + 12*n - 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A033581(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = A032528(2*n) - 1. - Adriano Caroli, Jul 21 2013
For n > 0, a(n) = floor(3/(cosh(1/n) - 1)) = floor(1/(n*sinh(1/n) - 1)); for similar formulas for cosine and sine, see A033581. - Clark Kimberling, Oct 19 2014, corrected by M. F. Hasler, Oct 21 2014
a(-n) = a(n). - Paul Curtz, Sep 17 2018
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(6))*cot(Pi/sqrt(6)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(6))*csc(Pi/sqrt(6)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(6))*csc(Pi/sqrt(6)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(6))*sin(Pi/sqrt(3))/sqrt(2). (End)
a(n) = A003154(n+1) - 2*A016777(n). - Leo Tavares, May 13 2022
E.g.f.: exp(x)*(6*x^2 + 6*x - 1). - Elmo R. Oliveira, Jan 16 2025

Extensions

Edited and extended by R. J. Mathar, Aug 06 2008
Better description Ray Chandler, Feb 03 2009

A195142 Concentric 10-gonal numbers.

Original entry on oeis.org

0, 1, 10, 21, 40, 61, 90, 121, 160, 201, 250, 301, 360, 421, 490, 561, 640, 721, 810, 901, 1000, 1101, 1210, 1321, 1440, 1561, 1690, 1821, 1960, 2101, 2250, 2401, 2560, 2721, 2890, 3061, 3240, 3421, 3610, 3801, 4000, 4201, 4410, 4621, 4840, 5061, 5290
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Also concentric decagonal numbers. Also sequence found by reading the line from 0, in the direction 0, 10, ..., and the same line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Main axis, perpendicular to A028895 in the same spiral.

Crossrefs

A033583 and A069133 interleaved.
Cf. A090771 (first differences).
Column 10 of A195040. - Omar E. Pol, Sep 28 2011

Programs

  • Haskell
    a195142 n = a195142_list !! n
    a195142_list = scanl (+) 0 a090771_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(10*n^2+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+10(n-1)},a[n],{n,50}] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,10,21},50] (* Harvey P. Dale, Sep 29 2011 *)

Formula

G.f.: -x*(1+8*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = -a(n-1) + 5*n^2 - 5*n + 1, a(0)=0. - Vincenzo Librandi, Sep 27 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = a(-n) = (10*n^2 + 3*(-1)^n - 3)/4.
a(n) = a(n-2) + 10*(n-1). (End)
a(n) = 2*a(n-1) + 0*a(n-2) - 2*a(n-3) + a(n-4); a(0)=0, a(1)=1, a(2)=10, a(3)=21. - Harvey P. Dale, Sep 29 2011
Sum_{n>=1} 1/a(n) = Pi^2/60 + tan(sqrt(3/5)*Pi/2)*Pi/(2*sqrt(15)). - Amiram Eldar, Jan 16 2023

A195146 Concentric 16-gonal numbers.

Original entry on oeis.org

0, 1, 16, 33, 64, 97, 144, 193, 256, 321, 400, 481, 576, 673, 784, 897, 1024, 1153, 1296, 1441, 1600, 1761, 1936, 2113, 2304, 2497, 2704, 2913, 3136, 3361, 3600, 3841, 4096, 4353, 4624, 4897, 5184, 5473, 5776, 6081, 6400, 6721, 7056, 7393, 7744, 8097, 8464
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric hexadecagonal numbers or concentric hexakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 16, ..., and the same line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Main axis, perpendicular to A033996 in the same spiral.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (8*n^2 + 3*(-1)^n - 3)/2;
a(n) = -a(n-1) + 8*n^2 - 8*n + 1. (End)
G.f. -x*(1+14*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi^2/96 + tan(sqrt(3)*Pi/4)*Pi/(8*sqrt(3)). - Amiram Eldar, Jan 16 2023

A195147 Concentric 18-gonal numbers.

Original entry on oeis.org

0, 1, 18, 37, 72, 109, 162, 217, 288, 361, 450, 541, 648, 757, 882, 1009, 1152, 1297, 1458, 1621, 1800, 1981, 2178, 2377, 2592, 2809, 3042, 3277, 3528, 3781, 4050, 4321, 4608, 4897, 5202, 5509, 5832, 6157, 6498, 6841, 7200, 7561, 7938, 8317, 8712, 9109
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric octadecagonal numbers or concentric octakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 18, ..., and the same line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Main axis, perpendicular to A027468 in the same spiral.

Crossrefs

A195321 and A195316 interleaved.
Cf. A032527, A195047, A195048. Column 18 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

G.f.: -x*(1+16*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (18*n^2 + 7*(-1)^n - 7)/4;
a(n) = -a(n-1) + 9*n^2 - 9*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/108 + tan(sqrt(7)*Pi/6)*Pi/(6*sqrt(7)). - Amiram Eldar, Jan 17 2023

A195148 Concentric 20-gonal numbers.

Original entry on oeis.org

0, 1, 20, 41, 80, 121, 180, 241, 320, 401, 500, 601, 720, 841, 980, 1121, 1280, 1441, 1620, 1801, 2000, 2201, 2420, 2641, 2880, 3121, 3380, 3641, 3920, 4201, 4500, 4801, 5120, 5441, 5780, 6121, 6480, 6841, 7220, 7601, 8000, 8401, 8820, 9241, 9680, 10121
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric icosagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 20, ..., and the same line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Main axis, perpendicular to A124080 in the same spiral.

Crossrefs

A195322 and A195317 interleaved.
Cf. A032527, A195048, A195049. Column 20 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 5*n^2 + 2*(-1)^n-2;
a(n) = -a(n-1) + 10*n^2 - 10*n + 1. (End)
G.f.: x*(1+18*x+x^2)/((1+x)*(1-x)^3). - Bruno Berselli, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/120 + tan(Pi/sqrt(5))*Pi/(8*sqrt(5)). - Amiram Eldar, Jan 17 2023
Previous Showing 11-20 of 44 results. Next