cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 106 results. Next

A244636 a(n) = 30*n^2.

Original entry on oeis.org

0, 30, 120, 270, 480, 750, 1080, 1470, 1920, 2430, 3000, 3630, 4320, 5070, 5880, 6750, 7680, 8670, 9720, 10830, 12000, 13230, 14520, 15870, 17280, 18750, 20280, 21870, 23520, 25230, 27000, 28830, 30720, 32670, 34680, 36750, 38880, 41070, 43320, 45630, 48000, 50430
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 30, ..., in the square spiral whose vertices are the generalized 17-gonal numbers. - Omar E. Pol, Jul 03 2014

Crossrefs

Cf. similar sequences listed in A244630.

Programs

  • Magma
    [30*n^2: n in [0..40]];
    
  • Maple
    A244636:=n->30*n^2: seq(A244636(n), n=0..50); # Wesley Ivan Hurt, Jul 04 2014
  • Mathematica
    Table[30 n^2, {n, 0, 40}]
    CoefficientList[Series[30x (1+x)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[ {3,-3,1},{0,30,120},50] (* Harvey P. Dale, Dec 02 2021 *)
  • PARI
    a(n)=30*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 30*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 30*A000290(n) = 15*A001105(n) = 10*A033428(n) = 6*A033429(n) = 5*A033581(n) = 3*A033583(n) = 2*A064761(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 30*x*(1 + x)*exp(x).
a(n) = n*A249674(n) = A330451(3*n). (End)

A064762 a(n) = 21*n^2.

Original entry on oeis.org

0, 21, 84, 189, 336, 525, 756, 1029, 1344, 1701, 2100, 2541, 3024, 3549, 4116, 4725, 5376, 6069, 6804, 7581, 8400, 9261, 10164, 11109, 12096, 13125, 14196, 15309, 16464, 17661, 18900, 20181, 21504, 22869, 24276, 25725, 27216, 28749
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 7-partite graph of order 7n, K_n,n,n,n,n,n,n.

Crossrefs

Similar sequences are listed in A244630.

Programs

Formula

a(n) = 42*n + a(n-1) - 21 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = 21*A000290(n) = 7*A033428(n) = 3*A033582(n). - Omar E. Pol, Jul 03 2014
a(n) = t(7*n) - 7*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(7*n) - 7*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 21*x*(1 + x)/(1-x)^3.
E.g.f.: 21*x*(1 + x)*exp(x).
a(n) = n*A008603(n) = A195049(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A195824 a(n) = 24*n^2.

Original entry on oeis.org

0, 24, 96, 216, 384, 600, 864, 1176, 1536, 1944, 2400, 2904, 3456, 4056, 4704, 5400, 6144, 6936, 7776, 8664, 9600, 10584, 11616, 12696, 13824, 15000, 16224, 17496, 18816, 20184, 21600, 23064, 24576, 26136, 27744, 29400, 31104, 32856, 34656, 36504, 38400, 40344
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818.
Surface area of a cube with side 2n. - Wesley Ivan Hurt, Aug 05 2014

Crossrefs

Programs

  • Magma
    [24*n^2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 05 2014
    
  • Magma
    I:=[0,24,96]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 06 2014
  • Maple
    A195824:=n->24*n^2: seq(A195824(n), n=0..50); # Wesley Ivan Hurt, Aug 05 2014
  • Mathematica
    24 Range[0, 30]^2 (* or *) Table[24 n^2, {n, 0, 30}] (* or *) CoefficientList[Series[24 x (1 + x)/(1 - x)^3, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 05 2014 *)
    LinearRecurrence[{3,-3,1},{0,24,96},40] (* Harvey P. Dale, Nov 11 2017 *)
  • PARI
    a(n) = 24*n^2; \\ Michel Marcus, Aug 05 2014
    

Formula

a(n) = 24*A000290(n) = 12*A001105(n) = 8*A033428(n) = 6*A016742(n) = 4*A033581(n) = 3*A139098(n) = 2*A135453(n).
From Wesley Ivan Hurt, Aug 05 2014: (Start)
G.f.: 24*x*(1+x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 24*x*(1 + x)*exp(x).
a(n) = n*A008606(n) = A195158(2*n). (End)

A200737 Table of numbers of the form v*w + w*u + u*v with 1 <= u <= v <= w <= n, with repetitions.

Original entry on oeis.org

3, 3, 5, 8, 12, 3, 5, 7, 8, 11, 12, 15, 16, 21, 27, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16, 19, 20, 21, 24, 26, 27, 32, 33, 40, 48, 3, 5, 7, 8, 9, 11, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 24, 26, 27, 29, 31, 32, 33, 35, 38, 39, 40, 45, 47, 48, 55, 56, 65
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2011

Keywords

Comments

A000292(n) = number of terms in row n;
T(1,1) = 3; right edge: T(n,A000292(n)) = A033428(n);
T(n,k) = T(n+1,k) for k <= A200738(n);
see table A200741 for distinct terms per row.

Examples

			First 5 rows:
1: 3;
2: 3,5,8,12;
3: 3,5,7,8,11,12,15,16,21,27;
4: 3,5,7,8,9,11,12,14,15,16,19,20,21,24,26,27,32,33,40,48;
5: 3,5,7,8,9,11,11,12,14,15,16,17,19,20,21,23,24,24,26,27,29,31,... .
First terms of 5th row:
T(5,1) = 1*1 + 1*1 + 1*1 = 3;
T(5,2) = 1*2 + 2*1 + 1*1 = 5;
T(5,3) = 1*3 + 3*1 + 1*1 = 7;
T(5,4) = 2*2 + 2*1 + 1*2 = 8;
T(5,5) = 1*4 + 4*1 + 1*1 = 9;
T(5,6) = 1*5 + 5*1 + 1*1 = 11;
T(5,7) = 2*3 + 3*1 + 1*2 = 11 = T(5,6);
T(5,8) = 2*2 + 2*2 + 2*2 = 12;
T(5,9) = 2*4 + 4*1 + 1*2 = 14;
T(5,10) = 3*3 + 3*1 + 1*3 = 15;
T(5,11) = 2*3 + 3*2 + 2*2 = 16;
T(5,12) = 2*5 + 5*1 + 1*2 = 17; ... .
		

Programs

  • Haskell
    import Data.List (sort)
    a200737 n k = a200737_tabl !! (n-1) !! (k-1)
    a200737_row n = sort
       [v*w + w*u + u*v | w <- [1..n], v <- [1..w], u <- [1..v]]
    a200737_tabl = map a200737_row [1..]

A212220 Triangle T(n,k), n>=0, 0<=k<=3n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete tripartite graph K_(n,n,n), highest powers first.

Original entry on oeis.org

1, 1, -3, 2, 0, 1, -12, 58, -137, 154, -64, 0, 1, -27, 324, -2223, 9414, -24879, 39528, -33966, 11828, 0, 1, -48, 1064, -14244, 126936, -784788, 3409590, -10329081, 21197804, -27779384, 20648794, -6476644, 0, 1, -75, 2650, -58100, 878200, -9632440, 78681510
Offset: 0

Views

Author

Alois P. Heinz, May 06 2012

Keywords

Comments

The complete tripartite graph K_(n,n,n) has 3*n vertices and 3*n^2 = A033428(n) edges. The chromatic polynomial of K_(n,n,n) has 3*n+1 = A016777(n) coefficients.

Examples

			2 example graphs:             +-------------+
.                             | +-------+   |
.                             +-o---o---o   |
.                                \ / \ / \ /
.                                 X   X   X
.                                / \ / \ / \
.              o---o---o      +-o---o---o   |
.              +-------+      | +-------+   |
.                             +-------------+
Graph:         K_(1,1,1)        K_(2,2,2)
Vertices:          3                6
Edges:             3               12
The complete tripartite graph K_(1,1,1) is the cycle graph C_3 with chromatic polynomial q*(q-1)*(q-2) = q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
  1;
  1,   -3,    2,       0;
  1,  -12,   58,    -137,     154,       -64,         0;
  1,  -27,  324,   -2223,    9414,    -24879,     39528, ...
  1,  -48, 1064,  -14244,  126936,   -784788,   3409590, ...
  1,  -75, 2650,  -58100,  878200,  -9632440,  78681510, ...
  1, -108, 5562, -180585, 4123350, -70008186, 912054348, ...
  ...
		

Crossrefs

Columns k=0-1 give: A000012, (-1)*A033428.
Row sums and last elements of rows give: A000007.
Row lengths give: A016777.

Programs

  • Maple
    P:= proc(n) option remember;
           expand(add(add(Stirling2(n, k) *Stirling2(n, m)
           *mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=0..n), k=0..n))
        end:
    T:= n-> seq(coeff(P(n), q, 3*n-k), k=0..3*n):
    seq(T(n), n=0..6);
  • Mathematica
    P[n_] := P[n] = Expand[Sum[Sum[StirlingS2[n, k] *StirlingS2[n, m]*Product[q - i, {i, 0, k + m - 1}]*(q - k - m)^n, {m, 1, n}], {k, 1, n}]];
    T[n_] := Table[Coefficient[P[n], q, 3*n - k], {k, 0, 3*n}];
    Array[T, 6] // Flatten (* Jean-François Alcover, May 29 2018, from Maple *)

Formula

T(n,k) = [q^(3*n-k)] Sum_{k,m=0..n} S2(n,k) * S2(n,m) * (q-k-m)^n * Product_{i=0..k+m-1} (q-i) with S2 = A008277.
Sum_{k=0..3n} (-1)^k * T(n,k) = A370961(n). - Alois P. Heinz, May 02 2024

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 02 2024

A270710 a(n) = 3*n^2 + 2*n - 1.

Original entry on oeis.org

-1, 4, 15, 32, 55, 84, 119, 160, 207, 260, 319, 384, 455, 532, 615, 704, 799, 900, 1007, 1120, 1239, 1364, 1495, 1632, 1775, 1924, 2079, 2240, 2407, 2580, 2759, 2944, 3135, 3332, 3535, 3744, 3959, 4180, 4407, 4640, 4879, 5124, 5375, 5632, 5895, 6164, 6439, 6720, 7007, 7300, 7599
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2016

Keywords

Comments

In general, the ordinary generating function for the values of quadratic polynomial p*n^2 + q*n + k, is (k + (p + q - 2*k)*x + (p - q + k)*x^2)/(1 - x)^3.
From Bruno Berselli, Mar 25 2016: (Start)
This sequence and A140676 provide all integer m such that 3*m + 4 is a square.
Numbers related to A135713 by A135713(n) = n*a(n) - Sum_{k=0..n-1} a(k).
After -1, second bisection of A184005. (End)

Examples

			a(0) = 3*0^2 + 2*0 - 1 = -1;
a(1) = 3*1^2 + 2*1 - 1 =  4;
a(2) = 3*2^2 + 2*2 - 1 = 15;
a(3) = 3*3^2 + 2*3 - 1 = 32, etc.
		

Crossrefs

Programs

  • GAP
    List([0..50], n -> 3*n^2+2*n-1); # Bruno Berselli, Feb 16 2018
  • Magma
    [3*n^2+2*n-1: n in [0..50]]; // Bruno Berselli, Mar 25 2016
    
  • Mathematica
    Table[3 n^2 + 2 n - 1, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {-1, 4, 15}, 51]
  • Maxima
    makelist(3*n^2+2*n-1, n, 0, 50); /* Bruno Berselli, Mar 25 2016 */
    
  • PARI
    Vec((-1 + 7*x)/(1 - x)^3 + O(x^60)) \\ Michel Marcus, Mar 22 2016
    
  • PARI
    lista(nn) = {for(n=0, nn, print1(3*n^2 + 2*n - 1, ", ")); } \\ Altug Alkan, Mar 25 2016
    
  • PARI
    vector(50, n, n--; 3*n^2+2*n-1) \\ Bruno Berselli, Mar 25 2016
    
  • Sage
    [3*n^2+2*n-1 for n in (0..50)] # Bruno Berselli, Mar 25 2016
    

Formula

G.f.: (-1 + 7*x)/(1 - x)^3.
E.g.f.: exp(x)*(-1 + 5*x + 3*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A033428(n) + A060747(n).
a(n) = A045944(n) - 1 = A056109(n) - 2.
a(-n) = A140676(n-1), with A140676(-1) = -1.
Sum_{n>=0} 1/a(n) = 3*(log(3) - 2)/8 - Pi/(8*sqrt(3)) = -0.564745312278736...
a(n) = Sum_{i = n-1..2*n-1} (2*i + 1). - Bruno Berselli, Feb 16 2018
a(n) = A000290(n+1) + 2*A000290(n) - 2. - Leo Tavares, May 28 2023
Sum_{n>=0} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + 3/4. - Amiram Eldar, Jul 20 2023

A271713 Numbers n such that 3*n - 5 is a square.

Original entry on oeis.org

2, 3, 7, 10, 18, 23, 35, 42, 58, 67, 87, 98, 122, 135, 163, 178, 210, 227, 263, 282, 322, 343, 387, 410, 458, 483, 535, 562, 618, 647, 707, 738, 802, 835, 903, 938, 1010, 1047, 1123, 1162, 1242, 1283, 1367, 1410, 1498, 1543, 1635, 1682, 1778, 1827, 1927, 1978, 2082, 2135, 2243, 2298
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 12 2016

Keywords

Comments

Quasipolynomial of order 2 and degree 2. - Charles R Greathouse IV, Apr 12 2016
From Ray Chandler, Apr 13 2016: (Start)
Square roots of resulting squares gives A001651.
Sequence is the union of A141631 and A271740. (End)

Examples

			a(3) = 7 because 3*7 - 5 = 16 = 4^2.
		

Crossrefs

Cf. numbers n such that 3*n + k is a square: A120328 (k=-6), this sequence (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6).

Programs

Formula

G.f.: x*(2 + x + x^3 + 2*x^4)/((1 - x)^3*(1 + x)^2). - Ilya Gutkovskiy, Apr 12 2016
a(n) = (3/2)*n^2 + O(n). - Charles R Greathouse IV, Apr 12 2016
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5. - Wesley Ivan Hurt, Apr 13 2016

A292313 Numbers that are the sum of three squares in arithmetic progression.

Original entry on oeis.org

75, 300, 507, 675, 867, 1200, 1875, 2028, 2523, 2700, 3468, 3675, 4107, 4563, 4800, 5043, 6075, 7500, 7803, 8112, 8427, 9075, 10092, 10800, 11163, 12675, 13872, 14700, 15987, 16428, 16875, 18252, 19200, 20172, 21675, 22707, 23763, 24300, 24843, 27075, 28227, 30000, 30603
Offset: 1

Views

Author

Antonio Roldán, Sep 14 2017

Keywords

Examples

			75 = 1^2 + 5^2 + 7^2 = 1 + 25 + 49, with 25 - 1 = 49 - 25 = 24.
675 = 3^2 + 15^2 + 21^2 = 9 + 225 + 441, with 225 - 9 = 441 - 225 = 216.
		

Crossrefs

Programs

  • PARI
    t=4; k=3; while(t<=13000, i=k; e=0; v=t+i; while(i>1&&e==0, if(issquare(v), m=3*t; e=1; print1(m,", ")); i+=-2; v+=i); k+=2; t+=k)

Formula

Sequence is 3*(distinct elements in A198385).
Numbers of the form 3*m^2 where 2*m^2 is in A004431. - Chai Wah Wu, Oct 05 2017

A083854 Numbers that are squares, twice squares, three times squares, or six times squares, i.e., numbers whose squarefree part divides 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 48, 49, 50, 54, 64, 72, 75, 81, 96, 98, 100, 108, 121, 128, 144, 147, 150, 162, 169, 192, 196, 200, 216, 225, 242, 243, 256, 288, 289, 294, 300, 324, 338, 361, 363, 384, 392, 400, 432, 441, 450, 484, 486, 507
Offset: 0

Views

Author

Henry Bottomley, May 06 2003

Keywords

Comments

It is simple to divide equilateral triangles into these numbers of congruent parts: squares by making smaller equilateral triangles; 6*squares by dividing each small equilateral triangle by its medians into small right triangles; and 2*squares or 3*squares by recombining three or two of these small right triangles.

Crossrefs

Programs

  • Mathematica
    mx = 23; Sort@Select[Flatten@Table[{1, 2, 3, 6} n^2, {n, mx}], # <= mx^2 &] (* Ivan Neretin, Nov 08 2016 *)

Formula

a(n) is bounded below by 0.137918...*n^2 where 0.137918... = 3*(3-2*sqrt(2))*(2-sqrt(3)); the error appears to be O(n).
Sum_{n>=1} 1/a(n) = Pi^2/3 (A195055). - Amiram Eldar, Dec 19 2020

A092205 Number of units in the imaginary quadratic field Q(sqrt(-n)).

Original entry on oeis.org

4, 2, 6, 4, 2, 2, 2, 2, 4, 2, 2, 6, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Eric W. Weisstein, Feb 24 2004

Keywords

Comments

Sequence of n such that a(n)=2 gives A092206; a(n)=4 gives A000290; a(n)=6 gives A033428. - Marc LeBrun, Apr 12 2006

Examples

			For n=1, the units are +/-1, +/-i, so a(1) = 4.
For n=3, the units are +/-1, +/-w, +/-w^2, where w is a cube root of unity, so a(3) = 6. [Corrected by _Jonathan Sondow_, Jan 29 2014]
		

Crossrefs

Programs

  • Maple
    A092205 := proc(n) if(type(sqrt(n),integer))then return 4: elif(n mod 3 = 0 and type(sqrt(n/3),integer))then return 6: else return 2: fi: end: seq(A092205(n),n=1..105); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    a[n_] := Which[ IntegerQ[ Sqrt[n] ], 4, Mod[n, 3] == 0 && IntegerQ[ Sqrt[n/3] ], 6, True, 2]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Oct 30 2012, after Nathaniel Johnston *)
  • PARI
    a(n)=if(issquare(n),return(4));if(n%3==0&&issquare(n/3),6,2) \\ Charles R Greathouse IV, Oct 30 2012

Formula

a(A005117(n)) = A236213(n). - Jonathan Sondow, Jan 29 2014
Previous Showing 51-60 of 106 results. Next