A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A185019
a(n) = n*(14*n-3).
Original entry on oeis.org
0, 11, 50, 117, 212, 335, 486, 665, 872, 1107, 1370, 1661, 1980, 2327, 2702, 3105, 3536, 3995, 4482, 4997, 5540, 6111, 6710, 7337, 7992, 8675, 9386, 10125, 10892, 11687, 12510, 13361, 14240, 15147, 16082, 17045, 18036, 19055, 20102, 21177, 22280, 23411, 24570
Offset: 0
Cf.
A195020 (vertices of the numerical spiral in link).
-
[n*(14*n-3): n in [0..42]];
-
I:=[0,11,50]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
CoefficientList[Series[x (11 + 17 x)/(1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
for(n=0, 42, print1(n*(14*n-3)", "));
A139273
a(n) = n*(8*n - 3).
Original entry on oeis.org
0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0
Cf.
A000217,
A014634,
A014635,
A033585,
A033586,
A033587,
A035008,
A051870,
A069129,
A085250,
A072279,
A139272,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A045944,
A186029,
A007742,
A022267,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734.
-
[ n*(8*n-3) : n in [0..40] ]; // Bruno Berselli, Feb 11 2011
-
Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
-
a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015
A244630
a(n) = 17*n^2.
Original entry on oeis.org
0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
Offset: 0
Cf. similar sequences of the type k*n^2:
A000290 (k = 1),
A001105 (k = 2),
A033428 (k = 3),
A016742 (k = 4),
A033429 (k = 5),
A033581 (k = 6),
A033582 (k = 7),
A139098 (k = 8),
A016766 (k = 9),
A033583 (k = 10),
A033584 (k = 11),
A135453 (k = 12),
A152742 (k = 13),
A144555 (k = 14),
A064761 (k = 15),
A016802 (k = 16), this sequence (k = 17),
A195321 (k = 18),
A244631 (k = 19),
A195322 (k = 20),
A064762 (k = 21),
A195323 (k = 22),
A244632 (k = 23),
A195824 (k = 24),
A016850 (k = 25),
A244633 (k = 26),
A244634 (k = 27),
A064763 (k = 28),
A244635 (k = 29),
A244636 (k = 30).
A016850
a(n) = (5*n)^2.
Original entry on oeis.org
0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500, 3025, 3600, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27225, 28900, 30625, 32400, 34225, 36100, 38025, 40000, 42025
Offset: 0
Similar sequences listed in
A244630.
A061167
a(n) = n^5 - n.
Original entry on oeis.org
0, 0, 30, 240, 1020, 3120, 7770, 16800, 32760, 59040, 99990, 161040, 248820, 371280, 537810, 759360, 1048560, 1419840, 1889550, 2476080, 3199980, 4084080, 5153610, 6436320, 7962600, 9765600, 11881350, 14348880, 17210340, 20511120, 24299970, 28629120
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. Zagier, Problems posed at the St Andrews Colloquium, 1996
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
A195322
a(n) = 20*n^2.
Original entry on oeis.org
0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0
From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Léo Sauvé, Problem 53, Crux Mathematicorum, Vol. 1, Nov. 1975, page 88.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..10^3],n->20*n^2); # Muniru A Asiru, Feb 01 2018
-
[20*n^2: n in [0..40]]; // Vincenzo Librandi, Sep 20 2011
-
a := n -> 20*n^2; seq(a(n), n=0..10^3); # Muniru A Asiru, Feb 01 2018
-
20 Range[0, 40]^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 20, 80}, 50] (* Harvey P. Dale, Jan 18 2013 *)
-
a(n) = 20*n^2 \\ Charles R Greathouse IV, Oct 07 2015
A316466
a(n) = 2*n*(7*n - 3).
Original entry on oeis.org
0, 8, 44, 108, 200, 320, 468, 644, 848, 1080, 1340, 1628, 1944, 2288, 2660, 3060, 3488, 3944, 4428, 4940, 5480, 6048, 6644, 7268, 7920, 8600, 9308, 10044, 10808, 11600, 12420, 13268, 14144, 15048, 15980, 16940, 17928, 18944, 19988, 21060, 22160, 23288, 24444, 25628, 26840
Offset: 0
-
List([0..50], n -> 2*n*(7*n-3));
-
[2*n*(7*n-3) for n in 0:50] |> println
-
[2*n*(7*n-3): n in [0..50]];
-
Table[2 n (7 n - 3), {n, 0, 50}]
LinearRecurrence[{3,-3,1},{0,8,44},50] (* Harvey P. Dale, Jan 24 2021 *)
-
makelist(2*n*(7*n-3), n, 0, 50);
-
vector(50, n, n--; 2*n*(7*n-3))
-
concat(0, Vec(4*x*(2 + 5*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, Jul 05 2018
-
[2*n*(7*n-3) for n in range(50)]
-
[2*n*(7*n-3) for n in (0..50)]
A064761
a(n) = 15*n^2.
Original entry on oeis.org
0, 15, 60, 135, 240, 375, 540, 735, 960, 1215, 1500, 1815, 2160, 2535, 2940, 3375, 3840, 4335, 4860, 5415, 6000, 6615, 7260, 7935, 8640, 9375, 10140, 10935, 11760, 12615, 13500, 14415, 15360, 16335, 17340, 18375, 19440, 20535, 21660, 22815
Offset: 0
A069011
Triangle with T(n,k) = n^2 + k^2.
Original entry on oeis.org
0, 1, 2, 4, 5, 8, 9, 10, 13, 18, 16, 17, 20, 25, 32, 25, 26, 29, 34, 41, 50, 36, 37, 40, 45, 52, 61, 72, 49, 50, 53, 58, 65, 74, 85, 98, 64, 65, 68, 73, 80, 89, 100, 113, 128, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200
Offset: 0
Triangle T(n,k) begins:
0;
1, 2;
4, 5, 8;
9, 10, 13, 18;
16, 17, 20, 25, 32;
25, 26, 29, 34, 41, 50;
36, 37, 40, 45, 52, 61, 72;
49, 50, 53, 58, 65, 74, 85, 98;
64, 65, 68, 73, 80, 89, 100, 113, 128;
81, 82, 85, 90, 97, 106, 117, 130, 145, 162;
100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200;
...
Cf.
A001481 for terms in this sequence,
A000161 for number of times each term appears,
A048147 for square array.
-
a069011 n k = a069011_tabl !! n !! k
a069011_row n = a069011_tabl !! n
a069011_tabl = map snd $ iterate f (1, [0]) where
f (i, xs@(x:_)) = (i + 2, (x + i) : zipWith (+) xs [i + 1, i + 3 ..])
-- Reinhard Zumkeller, Oct 11 2013
-
Table[n^2 + k^2, {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 07 2025 *)
Comments