cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A216155 Numbers n such that floor(sqrt(n + n^3)) = 1 + floor(sqrt(n^3)) = 1 + A000093(n).

Original entry on oeis.org

2, 13, 40, 43, 46, 52, 109, 152, 190, 243, 336, 351, 356, 366, 422, 584, 592, 741, 937, 978, 1011, 1040, 1137, 1330, 1355, 1362, 1376, 1398, 1434, 2063, 2320, 2520, 2553, 2660, 2665, 2928, 2940, 2993, 3067, 3075, 3092, 3296, 3532, 3631, 3703, 3712, 3730
Offset: 1

Views

Author

Zak Seidov, Sep 02 2012

Keywords

Comments

The sequence is infinite. For values of n not in the sequence we have floor(sqrt(n+n^3)) = floor(sqrt(n^3)) = A000093(n).

Crossrefs

Cf. A000093 (floor(n^(3/2))).
Cf. A000196, A000578, A034262, A247628 (subsequence).

Programs

  • Haskell
    a216155 n = a216155_list !! (n-1)
    a216155_list = filter
       (\x -> a000196 (a034262 x) == a000196 (a000578 x) + 1) [1..]
    -- Reinhard Zumkeller, Sep 26 2014
  • Mathematica
    Select[Range[10000], Floor[Sqrt[# + #^3]] - Floor[Sqrt[#^3]] == 1 &]

A341907 T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Comments

For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3   4    5    6    7    8    9    10    11    12
  ---+-------------------------------------------------------------
    0|  0  0   0   0   0    0    0    0    0    0     0     0     0
    1|  1  1   1   1   1    1    1    1    1    1     1     1     1
    2|  0  1   2   3   4    5    6    7    8    9    10    11    12
    3|  1  2   3   4   5    6    7    8    9   10    11    12    13
    4|  0  1   4   9  16   25   36   49   64   81   100   121   144
    5|  1  2   5  10  17   26   37   50   65   82   101   122   145
    6|  0  2   6  12  20   30   42   56   72   90   110   132   156
    7|  1  3   7  13  21   31   43   57   73   91   111   133   157
    8|  0  1   8  27  64  125  216  343  512  729  1000  1331  1728
    9|  1  2   9  28  65  126  217  344  513  730  1001  1332  1729
   10|  0  2  10  30  68  130  222  350  520  738  1010  1342  1740
   11|  1  3  11  31  69  131  223  351  521  739  1011  1343  1741
   12|  0  2  12  36  80  150  252  392  576  810  1100  1452  1872
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }

Formula

T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A345285 Sides of primary squares of type 1 (A344331). A primary square of type 1 is the smallest square that can be tiled with squares of two different sides a < b, so that the numbers of small and large squares are equal.

Original entry on oeis.org

10, 30, 68, 78, 130, 160, 222, 290, 300, 350, 480, 510, 520, 738, 742, 810, 820, 1010, 1088, 1218, 1248, 1342, 1530, 1740, 1752, 1820, 1830, 2080, 2210, 2430, 2560, 2590, 2750, 2758, 3270, 3390, 3492, 3552, 3560, 3570, 4112, 4290, 4498, 4640, 4770, 4800, 4930, 5508, 5600, 5850, 6028, 6250
Offset: 1

Views

Author

Bernard Schott, Jun 13 2021

Keywords

Comments

Notation: s = side of the primary tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form s = a*b * (a^2+b^2), with 1 <= a < b, and corresponding z = (a*b)^2 * (a^2+b^2) (A345286).
Every such primary square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
If gcd(a, b) = 1, then primitive sides of square s = a*b * (a^2+b^2) are in A344333 that is a subsequence.
If a = 1 and b = n > 1, then sides of squares s = n * (n^2+1) form the subsequence A034262 \ {0, 1}.
If q is a term and integer r > 1, then q * r^4 is another term.
Every term is even.

Examples

			a(1) = 10 and the primary square 10 X 10 can be tiled with A345286(1) = 20 small squares with side a = 1 and 20 large squares with side b = 2.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|     with 10 elementary 2 X 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
a(6) = 160 is the first side of an primary square that is not primitive and it corresponds to (a,b) = (2,4); the square 160 X 160 can be tiled with A345286(6) = 1280 small squares with side a = 2 and 1280 large squares with side b = 4.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

A363733 Array read by upwards antidiagonals. The family of polynomials generated by the divisibility matrix (A113704) evaluated over the nonnegative integers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 6, 3, 1, 0, 3, 10, 12, 4, 1, 0, 2, 22, 30, 20, 5, 1, 0, 4, 34, 93, 68, 30, 6, 1, 0, 2, 78, 246, 276, 130, 42, 7, 1, 0, 4, 130, 768, 1028, 655, 222, 56, 8, 1, 0, 3, 278, 2190, 4180, 3130, 1338, 350, 72, 9, 1
Offset: 0

Views

Author

Peter Luschny, Jun 27 2023

Keywords

Comments

The name expresses the 'row view' of the array. The 'column view' regards the array as the collection of the inverse Möbius transforms of the power sequences k^n = 0^n, 1^n, 2^n, .... (n >= 0). Viewed this way, the array is a generalization of the number of divisors sequence tau (A000005), to which it reduces in the case k = 1.
The array has offset (0, 0). It uses the usual definition of 'k divides n' as described in Apostol, rather than the shortened version, which restricts to values k > 0 as some programs do (but not SageMath). Such a restriction makes sense in the context of rational numbers but not in the case of natural numbers.

Examples

			Array A(n, k) starts:
  [0] 1, 1,   1,    1,     1,      1,       1,       1,        1, ... A000012
  [1] 0, 1,   2,    3,     4,      5,       6,       7,        8, ... A001477
  [2] 0, 2,   6,   12,    20,     30,      42,      56,       72, ... A002378
  [3] 0, 2,  10,   30,    68,    130,     222,     350,      520, ... A034262
  [4] 0, 3,  22,   93,   276,    655,    1338,    2457,     4168, ...
  [5] 0, 2,  34,  246,  1028,   3130,    7782,   16814,    32776, ... A131471
  [6] 0, 4,  78,  768,  4180,  15780,   46914,  118048,   262728, ...
  [7] 0, 2, 130, 2190, 16388,  78130,  279942,  823550,  2097160, ... A190578
  [8] 0, 4, 278, 6654, 65812, 391280, 1680954, 5767258, 16781384, ...
   A000005,A055895,A363913, ...                             A066108 (diagonal)
.
Triangle T(n, k) starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1,   1;
  [3] 0, 2,   2,   1;
  [4] 0, 2,   6,   3,    1;
  [5] 0, 3,  10,  12,    4,   1;
  [6] 0, 2,  22,  30,   20,   5,   1;
  [7] 0, 4,  34,  93,   68,  30,   6,  1;
  [8] 0, 2,  78, 246,  276, 130,  42,  7, 1;
  [9] 0, 4, 130, 768, 1028, 655, 222, 56, 8, 1;
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer 1976, p. 14.

Crossrefs

Cf. A113704 (in compact form A113705), A000005 (column 1), A055895 (column 2), A363913 (column 3), A001477 (row 1), A002378 (row 2), A034262 (row 3), A131471 (row 5), A190578 (row 7), A363912 (row sums), A066108 (main diagonal of array).

Programs

  • Maple
    divides := (k, n) -> ifelse(k = n or (k > 0 and irem(n, k) = 0), 1, 0):
    A := (n, k) -> local j; add(divides(j, n) * k^j, j = 0 ..n):
    for n from 0 to 8 do seq(A(n, k), k = 0..8) od;
    # If we introduce the 'inverse Möbius transform' InvMoebius acting on s ...
    InvMoebius := (s, n) -> local j; add(divides(j, n) * s(j), j = 0 ..n):
    # ... the transposed array is given by applying InvMoebius to the powers r^m:
    seq(lprint(seq(InvMoebius(m -> r^m, n), n = 0..8)), r = 0..8);
    # For instance we see that the number of divisors is the inverse
    # Moebius transform of the constant sequence s = 1.
  • SageMath
    def A(n, k): return sum(j.divides(n) * k^j for j in (0..n))
    for n in srange(9): print([A(n, k) for k in (0..8)])

Formula

A(n, k) = Sum_{j=0..n} divides(j, n) * k^j, where divides(k, n) <-> [k = n or (k > 0 and n mod k = 0)], and '[ ]' denotes the Iverson bracket.
The columns are the inverse Möbius transforms of the powers x^n, x >= 0.

A087782 a(n) = number of solutions to x^3 + x == 0 (mod n).

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 6, 1, 1, 3, 2, 3, 1, 3, 2, 1, 3, 1, 2, 1, 1, 3, 6, 1, 1, 3, 6, 1, 1, 1, 6, 3, 1, 3, 2, 3, 3, 3, 2, 1, 1, 3, 2, 1, 1, 1, 6, 3, 3, 3, 2, 3, 1, 1, 6, 1, 3, 3, 2, 1, 1, 9, 2, 1, 3, 1, 6, 1, 1, 3, 6, 3, 1, 1, 6, 1, 3, 1, 6, 1, 1, 9, 2, 3, 1, 3, 6, 3, 1, 1, 2, 3, 1, 3, 2, 1, 3, 3, 6, 1, 3, 3
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 06 2003

Keywords

Comments

Shadow transform of A034262. - Michel Marcus, Jun 06 2013

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; If[p == 2, If[e == 1, 2, 1], If[Mod[p, 4] == 1, 3, 1]], {pe, FactorInteger[n]}]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019 *)
  • PARI
    a(n)={my(v=vector(n)); sum(i=0, n-1, lift(Mod(i,n)^3 + i) == 0)} \\ Andrew Howroyd, Jul 15 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, if(e==1, 2, 1), if(p%4==1, 3, 1)))} \\ Andrew Howroyd, Jul 15 2018

Formula

Multiplicative with a(2^1) = 2, a(2^e) = 1 for e > 1, a(p^e) = 3 for p mod 4 == 1, a(p^e) = 1 for p mod 4 == 3. - Andrew Howroyd, Jul 15 2018

Extensions

More terms from David Wasserman, Jun 17 2005

A131473 a(n) = n^6 - n.

Original entry on oeis.org

0, 0, 62, 726, 4092, 15620, 46650, 117642, 262136, 531432, 999990, 1771550, 2985972, 4826796, 7529522, 11390610, 16777200, 24137552, 34012206, 47045862, 63999980, 85766100, 113379882, 148035866, 191102952, 244140600, 308915750
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

A180499 n^3 + n-th cubefree number.

Original entry on oeis.org

2, 10, 30, 68, 130, 222, 350, 521, 739, 1011, 1343, 1741, 2211, 2759, 3392, 4114, 4932, 5852, 6880, 8022, 9284, 10673, 12193, 13852, 15654, 17606, 19714, 21985, 24423, 27035, 29827, 32805, 35975, 39343
Offset: 1

Views

Author

Jonathan Vos Post, Jan 20 2011

Keywords

Comments

First differs from n^3 + n (A034262) at n=8 because 8 is the first positive integer which is not cubefree.
What cubes appear in this sequence?
No cubes appear in this sequence: the n-th cubefree number is asymptotically zeta(3)*n, putting members of this sequence strictly between n^3 and (n+1)^3. (Lacking effective error bounds this actually only shows that there are finitely many.) - Charles R Greathouse IV, Jan 21 2011

Examples

			a(8) = 8^3 + 8th number that is not divisible by any cube > 1 = 8^3 + 9 = 521.
		

Crossrefs

Programs

  • Mathematica
    #[[1]]+#[[2]]^3&/@Module[{cf=Select[Range[50],Max[FactorInteger[#][[All,2]]] < 3&]},Thread[{cf,Range[Length[cf]]}]] (* Harvey P. Dale, Jun 28 2020 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A180499(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return n**3+m # Chai Wah Wu, Aug 12 2024

Formula

a(n) = n^3 + A004709(n) = A000578(n) + A004709(n).

A181427 a(n) = n + [n^2 if n is odd or n^3 if n is even].

Original entry on oeis.org

2, 10, 12, 68, 30, 222, 56, 520, 90, 1010, 132, 1740, 182, 2758, 240, 4112, 306, 5850, 380, 8020, 462, 10670, 552, 13848, 650, 17602, 756, 21980, 870, 27030, 992, 32800, 1122, 39338, 1260, 46692, 1406, 54910, 1560, 64040, 1722, 74130, 1892, 85228, 2070
Offset: 1

Views

Author

Dinesh Panchamia (dgpanchamia(AT)gmail.com), Oct 19 2010

Keywords

Comments

a(2*k+1) = 2*A000384(k+1) (k in A001477). - Bruno Berselli, Oct 20 2010

Examples

			For n=5, 5+5^2=30 and n=6 6+6^3=222.
		

Crossrefs

Programs

  • Mathematica
    If[OddQ[ # ],#+#^2,#+#^3]&/@Range[50] (* Harvey P. Dale, Nov 03 2010 *)

Formula

a(n) = n + n^(2*(n mod 2)+3*(1-(n mod 2))).
a(n) = n + n^((5+(-1)^n)/2) = n*(1+A065679(n)).
G.f.: 2*x*(1+5*x+2x^2+14*x^3-3*x^4+5*x^5)/(1-x^2)^4.
a(n)-4*a(n-2)+6*a(n-4)-4*a(n-6)+a(n-8) = 0 for n>8.
a(2*n) = A034262(2*n). a(2*n+1) = A002939(n+1).

Extensions

Formulas and more terms from R. J. Mathar and Bruno Berselli, Oct 19 2010

A246654 T(n,k) = 2*(K(n,2)*I(k,2) - (-1)^(n+k)*I(n,2)*K(k,2)), where I(n,x) and K(n,x) are Bessel functions; triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 10, 7, 3, 1, 0, 43, 30, 13, 4, 1, 0, 225, 157, 68, 21, 5, 1, 0, 1393, 972, 421, 130, 31, 6, 1, 0, 9976, 6961, 3015, 931, 222, 43, 7, 1, 0, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 0, 740785, 516901, 223884, 69133, 16485, 3193, 520, 73, 9, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 12 2014

Keywords

Examples

			T(n, k) as a rectangular matrix (for n >= 0). Only the lower infinite triangle (0 <= k <=n) constitutes the sequence although T(n,k) is defined for all (n,k) in Z^2.
[   0,    1,   -1,   3, -10,  43, -225, 1393, -9976]
[   1,    0,    1,  -2,   7, -30,  157, -972,  6961]
[   1,    1,    0,   1,  -3,  13,  -68,  421, -3015]
[   3,    2,    1,   0,   1,  -4,   21, -130,   931]
[  10,    7,    3,   1,   0,   1,   -5,   31,  -222]
[  43,   30,   13,   4,   1,   0,    1,   -6,    43]
[ 225,  157,   68,  21,   5,   1,    0,    1,    -7]
[1393,  972,  421, 130,  31,   6,    1,    0,     1]
[9976, 6961, 3015, 931, 222,  43,    7,    1,     0]
The diagonals d(n,k) = T(n+k-floor(n/2),k-floor(n/2)) are represented by polynomials described in A246656.
   n\k:    0   1    2     3    4     p_n(x)
-------------------------------------------------------
d(0,k):    0,  0,   0,    0,   0, .. 0                   A000004
d(1,k):    1,  1,   1,    1,   1, .. 1                   A000012
d(2,k):  [0],  1,   2,    3,   4, .. x                   A001477
d(3,k):  [1],  3,   7,   13,  21, .. x^2+x+1             A002061
d(4,k):  [0,  2],  10,   30,  68, .. x^3+x               A034262
d(5,k):  [1,  7],  43,  157, 421, .. x^4+2*x^3+2*x^2+x+1
		

Crossrefs

T(n+0,0) = A001040(n).
T(n+1,1) = A001053(n+1).
T(n+2,2) = A058307(n).
T(n+3,3) = A058308(n).
T(n+4,4) = A058309(n).

Programs

  • Maple
    T := (n, k) -> (BesselK(n,2)*BesselI(k,2) - (-1)^(n+k)*BesselI(n,2) *BesselK(k,2))*2; seq(lprint(seq(round(evalf(T(n,k),99)), k=0..n)), n=0..8);
    # Recurrence
    T := proc(n,k) option remember; local m; m := n-1;
    if  k > m or k < 0 then 0 elif k = m then 1 else T(m-1,k) + m*T(m,k) fi end:
    seq(print(seq(T(n,k), k=0..n)), n=0..8);
  • Mathematica
    T[n_, k_] := T[n, k] = With[{m = n - 1}, If[k > m || k < 0, 0, If[k == m, 1, T[m - 1, k] + m*T[m, k]]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2019 *)
  • Sage
    def A246654_col(n, k): # k-th column of the triangle
        if n < 2: return n
        return hypergeometric([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4) *rising_factorial(k+1,n-1)
    for k in range(6): [round(A246654_col(n,k).n(100)) for n in (0..10)]

Formula

T(n+k,k) = hypergeom([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4)* Pochhammer(k+1, n-1).
Recurrence: T(n,k) = T(n-2,k)+(n-1)*T(n-1,k), T(n,n)=0, T(n,n-1)=1.
T(n,k) = T(n,-k) = T(-n,k) = T(-n,-k).

A246656 Triangle read by rows: T(n, k) is the coefficient of x^k of the polynomial p_n(x) representing the n-th diagonal of A246654.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 0, 3, 0, -1, 0, 1, 0, 1, 8, 5, -5, 0, 3, 1, 0, 0, -18, 0, 29, 0, -8, 0, 1, 0, 1, -80, -13, 121, 29, -35, -7, 4, 1, 0, 0, 357, 0, -513, 0, 182, 0, -22, 0, 1, 0, 1, 1865, 344, -2686, -484, 945, 175, -114, -21, 5, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 13 2014

Keywords

Examples

			The first few polynomials and their coefficients:
             0;               0;
            1, 0;             1;
          0, 1, 0;            x;
         1, 1, 1, 0;          x*(x+1)+1;
       0, 1, 0, 1, 0;         x*(x^2+1);
      1, 1, 2, 2, 1, 0;       x*(x+1)*(x^2+x+1)+1;
    0, 3, 0, -1, 0, 1, 0;     x*(x^4-x^2+3);
  1, 8, 5, -5, 0, 3, 1, 0;    x*(x+1)*(x^4+2*x^3-2*x^2-3*x+8)+1;
0,-18, 0, 29, 0, -8, 0, 1,0;  x*(x^6-8*x^4+29*x^2-18);
The values of some polynomials:
------------------------------------------------
     n:    -4    -3   -2  -1   0   1    2     3
------------------------------------------------
p_0(n):     0,    0,   0,  0,  0,  0,   0,    0,   A000004
p_1(n):     1,    1,   1,  1,  1,  1,   1,    1,   A000012
p_2(n):    -4,   -3,  -2, -1,  0,  1,   2,    3,   A001477
p_3(n):    13,    7,   3,  1,  1,  3,   7,   13,   A002061
p_4(n):   -68,  -30, -10, -2,  0,  2,  10,   30,   A034262
p_5(n):   157,   43,   7,  1,  1,  7,  43,  157,
p_6(n):  -972, -225, -30, -3,  0,  3,  30,  225,
		

Crossrefs

Programs

  • Maple
    with(Student[NumericalAnalysis]):
    poly := proc(n) local B; if n = 0 then return 0 fi;
    B := (n,k) -> round(evalf(2*(BesselK(n,2)*BesselI(k,2)
    -(-1)^(n+k)*BesselI(n,2)*BesselK(k,2)),64));
    [seq([k+iquo(n,2),B(k+n,k)], k=-iquo(n,2)..n-1)];
    PolynomialInterpolation(%, independentvar=x);
    expand(Interpolant(%)) end:
    A246656_row := n -> seq(coeff(poly(n),x,j), j=0..n);
    seq(print(A246656_row(n)), n=0..11);
Previous Showing 21-30 of 37 results. Next