cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 142 results. Next

A238628 Number of partitions p of n such that n - max(p) is a part of p.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2014

Keywords

Comments

Also the number of integer partitions of n that are of length 2 or contain n/2. The first condition alone is A004526, complement A058984. The second condition alone is A035363, complement A086543, ranks A344415. - Gus Wiseman, Oct 07 2023

Examples

			a(6) counts these partitions:  51, 42, 33, 321, 3111.
		

Crossrefs

Cf. A238479.
The strict case is A365659, complement A365826.
The complement is counted by A365825.
These partitions are ranked by A366318.
A000041 counts integer partitions, strict A000009.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
  • PARI
    a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
  • Python
    from sympy.utilities.iterables import partitions
    def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
    

A266755 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120, 114, 127, 120, 133, 127, 140, 133, 147, 140, 154, 147, 161, 154, 169
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A005044 but without the three leading zeros. There are so many situations where one wants this sequence rather than A005044 that it seems appropriate for it to have its own entry.
But see A005044 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_3.
The Molien series for the finite Coxeter group of type D_k (k >= 3) has g.f. = 1/Product_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Also, Molien series for invariants of finite Coxeter group A_3. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k.
a(n) is the number of partitions of n into parts 2, 3, and 4. - Joerg Arndt, Apr 16 2017
From Gus Wiseman, May 23 2021: (Start)
Also the number of integer partitions of n into at most n/2 parts, none greater than 3. The case of any maximum is A110618. The case of any length is A001399. The Heinz numbers of these partitions are given by A344293.
For example, the a(2) = 1 through a(13) = 5 partitions are:
2 3 22 32 33 322 332 333 3322 3332 3333 33322
31 222 331 2222 3222 3331 32222 33222 33331
321 3221 3321 22222 33221 33321 322222
3311 32221 33311 222222 332221
33211 322221 333211
332211
333111
(End)

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 4*x^8 + ... - _Michael Somos_, Jan 29 2022
		

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A005044.
Cf. A001400 (partial sums).
Cf. A308065.
Number of partitions of n whose Heinz number is in A344293.
A001399 counts partitions with all parts <= 3, ranked by A051037.
A025065 counts partitions of n with >= n/2 parts, ranked by A344296.
A035363 counts partitions of n with n/2 parts, ranked by A340387.
A110618 counts partitions of n into at most n/2 parts, ranked by A344291.

Programs

  • Magma
    I:=[1,0,1,1,2,1,3,2,4]; [n le 9 select I[n] else Self(n-2)+ Self(n-3)+Self(n-4)-Self(n-5)-Self(n-6)-Self(n-7)+Self(n-9): n in [1..100]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)), {x, 0, 100}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1}, {1,0,1,1,2,1,3,2,4}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
    Table[Length[Select[IntegerPartitions[n],Length[#]<=n/2&&Max@@#<=3&]],{n,0,30}] (* Gus Wiseman, May 23 2021 *)
    a[ n_] := Round[(n + 3*(2 - Mod[n,2]))^2/48]; (* Michael Somos, Jan 29 2022 *)
  • PARI
    Vec(1/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = round((n + 3*(2-n%2))^2/48)}; /* Michael Somos, Jan 29 2022 */
    
  • Sage
    (1/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Jun 13 2019

Formula

a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. - Vincenzo Librandi, Jan 11 2016
a(n) = a(-9-n) for all n in Z. a(n) = a(n+3) for all n in 2Z. - Michael Somos, Jan 29 2022
E.g.f.: exp(-x)*(81 - 18*x + exp(2*x)*(107 + 60*x + 6*x^2) + 64*exp(x/2)*cos(sqrt(3)*x/2) + 36*exp(x)*(cos(x) - sin(x)))/288. - Stefano Spezia, Mar 05 2023
For n >= 3, if n is even, a(n) = a(n-3) + floor(n/4) + 1, otherwise a(n) = a(n-3). - Robert FERREOL, Feb 05 2024
a(n) = floor((n^2+9*n+(3*n+9)*(-1)^n+39)/48). - Hoang Xuan Thanh, Jun 03 2025

A340601 Number of integer partitions of n of even rank.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 3, 11, 8, 18, 16, 34, 33, 57, 59, 98, 105, 159, 179, 262, 297, 414, 478, 653, 761, 1008, 1184, 1544, 1818, 2327, 2750, 3480, 4113, 5137, 6078, 7527, 8899, 10917, 12897, 15715, 18538, 22431, 26430, 31805, 37403, 44766, 52556, 62620, 73379
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. For this sequence, the rank of an empty partition is 0.

Examples

			The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot):
  (1)  .  (3)    (22)  (5)      (42)    (7)        (44)      (9)
          (21)         (41)     (321)   (43)       (62)      (63)
          (111)        (311)    (2211)  (61)       (332)     (81)
                       (2111)           (322)      (521)     (333)
                       (11111)          (331)      (2222)    (522)
                                        (511)      (4211)    (531)
                                        (2221)     (32111)   (711)
                                        (4111)     (221111)  (4221)
                                        (31111)              (4311)
                                        (211111)             (6111)
                                        (1111111)            (32211)
                                                             (33111)
                                                             (51111)
                                                             (222111)
                                                             (411111)
                                                             (3111111)
                                                             (21111111)
                                                             (111111111)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The positive case is A101708 (A340605).
The Heinz numbers of these partitions are A340602.
The odd version is A340692 (A340603).
- Rank -
A047993 counts partitions of rank 0 (A106529).
A072233 counts partitions by sum and length.
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r),
          `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
          `if`(r<0, irem(i, 2), r))))
        end:
    a:= n-> b(n$2, -1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 22 2021
  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]];
    a[n_] := b[n, n, -1];
    a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
  • PARI
    p_q(k) = {prod(j=1, k, 1-q^j); }
    GB_q(N, M)= {if(N>=0 && M>=0,  p_q(N+M)/(p_q(M)*p_q(N)), 0 ); }
    A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)}
    A_q(50) \\ John Tyler Rascoe, Apr 15 2024

Formula

G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - John Tyler Rascoe, Apr 15 2024
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Apr 17 2024

A345958 Numbers whose prime indices have reverse-alternating sum 1.

Original entry on oeis.org

2, 6, 8, 15, 18, 24, 32, 35, 50, 54, 60, 72, 77, 96, 98, 128, 135, 140, 143, 150, 162, 200, 216, 221, 240, 242, 288, 294, 308, 315, 323, 338, 375, 384, 392, 437, 450, 486, 512, 540, 560, 572, 578, 600, 648, 667, 693, 722, 726, 735, 800, 864, 875, 882, 884, 899
Offset: 1

Views

Author

Gus Wiseman, Jul 11 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Of course, the reverse-alternating sum of prime indices is also the alternating sum of reversed prime indices.
Also numbers with exactly one odd conjugate prime index. Conjugate prime indices are listed by A321650, ranked by A122111.

Examples

			The initial terms and their prime indices:
   2: {1}
   6: {1,2}
   8: {1,1,1}
  15: {2,3}
  18: {1,2,2}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  35: {3,4}
  50: {1,3,3}
  54: {1,2,2,2}
  60: {1,1,2,3}
  72: {1,1,1,2,2}
  77: {4,5}
  96: {1,1,1,1,1,2}
  98: {1,4,4}
		

Crossrefs

The k > 0 version is A000037.
These multisets are counted by A000070.
The k = 0 version is A000290, counted by A000041.
The version for unreversed-alternating sum is A001105.
These partitions are counted by A035363.
These are the positions of 1's in A344616.
The k = 2 version is A345961, counted by A120452.
A000984/A345909/A345911 count/rank compositions with alternating sum 1.
A001791/A345910/A345912 count/rank compositions with alternating sum -1.
A088218 counts compositions with alternating sum 0, ranked by A344619.
A025047 counts wiggly compositions.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices.
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344607 counts partitions with reverse-alternating sum >= 0.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[100],sats[primeMS[#]]==1&]

A349157 Heinz numbers of integer partitions where the number of even parts is equal to the number of odd conjugate parts.

Original entry on oeis.org

1, 4, 6, 15, 16, 21, 24, 25, 35, 60, 64, 77, 84, 90, 91, 96, 100, 121, 126, 140, 143, 150, 210, 221, 240, 247, 256, 289, 297, 308, 323, 336, 351, 360, 364, 375, 384, 400, 437, 462, 484, 490, 495, 504, 525, 529, 546, 551, 560, 572, 585, 600, 625, 667, 686, 726
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with the same number of even prime indices as odd conjugate prime indices.
These are also partitions for which the number of even parts is equal to the positive alternating sum of the parts.

Examples

			The terms and their prime indices begin:
    1: ()
    4: (1,1)
    6: (2,1)
   15: (3,2)
   16: (1,1,1,1)
   21: (4,2)
   24: (2,1,1,1)
   25: (3,3)
   35: (4,3)
   60: (3,2,1,1)
   64: (1,1,1,1,1,1)
   77: (5,4)
   84: (4,2,1,1)
   90: (3,2,2,1)
   91: (6,4)
   96: (2,1,1,1,1,1)
		

Crossrefs

A subset of A028260 (even bigomega), counted by A027187.
These partitions are counted by A277579.
This is the half-conjugate version of A325698, counted by A045931.
A000041 counts partitions, strict A000009.
A047993 counts balanced partitions, ranked by A106529.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A100824 counts partitions with at most one odd part, ranked by A349150.
A108950/A108949 count partitions with more odd/even parts.
A122111 represents conjugation using Heinz numbers.
A130780/A171966 count partitions with more or equal odd/even parts.
A257991/A257992 count odd/even prime indices.
A316524 gives the alternating sum of prime indices (reverse: A344616).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[primeMS[#],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&]

Formula

A257992(a(n)) = A257991(A122111(a(n))).

A357637 Triangle read by rows where T(n,k) is the number of integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 1, 1, 3, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 5, 2, 4, 0, 0, 0, 0, 2, 6, 3, 4, 0, 0, 0, 0, 2, 3, 9, 3, 5, 0, 0, 0, 0, 0, 4, 7, 10, 4, 5, 0, 0, 0, 0, 0, 0, 11, 8, 13, 4, 6, 0, 0, 0, 0, 0, 0, 4, 15, 12, 14, 5, 6, 0, 0, 0, 0, 0, 0, 3, 7, 25, 13, 17, 5, 7
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  1  2
  0  0  1  1  3
  0  0  0  2  2  3
  0  0  0  0  5  2  4
  0  0  0  0  2  6  3  4
  0  0  0  0  2  3  9  3  5
  0  0  0  0  0  4  7 10  4  5
  0  0  0  0  0  0 11  8 13  4  6
  0  0  0  0  0  0  4 15 12 14  5  6
  0  0  0  0  0  0  3  7 25 13 17  5  7
Row n = 9 counts the following partitions:
  (3222)       (333)      (432)     (441)  (9)
  (22221)      (3321)     (522)     (531)  (54)
  (21111111)   (4221)     (4311)    (621)  (63)
  (111111111)  (32211)    (5211)    (711)  (72)
               (222111)   (6111)           (81)
               (2211111)  (33111)
               (3111111)  (42111)
                          (51111)
                          (321111)
                          (411111)
		

Crossrefs

Row sums are A000041.
Number of nonzero entries in row n appears to be A004525(n+1).
Last entry of row n is A008619(n).
Column sums appear to be A029862.
The central column is A035363, skew A035544.
For original alternating sum we have A344651, ordered A097805.
The skew-alternating version is A357638.
The central column of the reverse is A357639, skew A357640.
The ordered version (compositions) is A357645, skew A357646.
The reverse version is A357704, skew A357705.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Maple
    b:= proc(n, i, s, t) option remember; `if`(n=0, x^s, `if`(i<1, 0,
          b(n, i-1, s, t)+b(n-i, min(n-i, i), s+`if`(t<2, i, -i), irem(t+1, 4))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=-n..n, 2))(b(n$2, 0$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Oct 12 2022
  • Mathematica
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[n],halfats[#]==k&]],{n,0,12},{k,-n,n,2}]

Formula

Conjecture: The column sums are A029862.

A344296 Numbers with at least as many prime factors (counted with multiplicity) as half their sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 280, 288, 300, 320, 324, 336, 352
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of certain partitions counted by A025065, but different from palindromic partitions, which have Heinz numbers A265640.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            30: {1,2,3}
      2: {1}           32: {1,1,1,1,1}
      3: {2}           36: {1,1,2,2}
      4: {1,1}         40: {1,1,1,3}
      6: {1,2}         48: {1,1,1,1,2}
      8: {1,1,1}       54: {1,2,2,2}
      9: {2,2}         56: {1,1,1,4}
     10: {1,3}         60: {1,1,2,3}
     12: {1,1,2}       64: {1,1,1,1,1,1}
     16: {1,1,1,1}     72: {1,1,1,2,2}
     18: {1,2,2}       80: {1,1,1,1,3}
     20: {1,1,3}       81: {2,2,2,2}
     24: {1,1,1,2}     84: {1,1,2,4}
     27: {2,2,2}       88: {1,1,1,5}
     28: {1,1,4}       90: {1,2,2,3}
		

Crossrefs

The case with difference at least 1 is A322136.
The case of equality is A340387, counted by A000041 or A035363.
The opposite version is A344291, counted by A110618.
The conjugate version is A344414, with even-weight case A344416.
A025065 counts palindromic partitions, ranked by A265640.
A056239 adds up prime indices, row sums of A112798.
A300061 lists numbers whose sum of prime indices is even.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]>=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&]

Formula

A056239(a(n)) <= 2*A001222(a(n)).
a(n) = A322136(n)/4.

A357638 Triangle read by rows where T(n,k) is the number of integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 4, 4, 1, 1, 0, 0, 0, 4, 5, 4, 1, 1, 0, 0, 0, 1, 10, 5, 4, 1, 1, 0, 0, 0, 1, 5, 13, 5, 4, 1, 1, 0, 0, 0, 0, 4, 13, 14, 5, 4, 1, 1, 0, 0, 0, 0, 1, 13, 17, 14, 5, 4, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  0  3  1  1
  0  0  1  4  1  1
  0  0  1  4  4  1  1
  0  0  0  4  5  4  1  1
  0  0  0  1 10  5  4  1  1
  0  0  0  1  5 13  5  4  1  1
  0  0  0  0  4 13 14  5  4  1  1
  0  0  0  0  1 13 17 14  5  4  1  1
  0  0  0  0  1  5 28 18 14  5  4  1  1
Row n = 7 counts the following partitions:
  .  .  .  (322)      (43)      (52)     (61)  (7)
           (331)      (421)     (511)
           (2221)     (3211)    (4111)
           (1111111)  (22111)   (31111)
                      (211111)
		

Crossrefs

Row sums are A000041.
Number of nonzero entries in row n appears to be A004396(n+1).
First nonzero entry of each row appears to converge to A146325.
The central column is A035544, half A035363.
Column sums appear to be A298311.
For original alternating sum we have A344651, ordered A097805.
The half-alternating version is A357637.
The ordered version (compositions) is A357646, half A357645.
The reverse version is A357705, half A357704.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[n],skats[#]==k&]],{n,0,12},{k,-n,n,2}]

Formula

Conjecture: The columns are palindromes with sums A298311.

A344741 Number of integer partitions of 2n with reverse-alternating sum -2.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 14, 24, 39, 62, 95, 144, 212, 309, 442, 626, 873, 1209, 1653, 2245, 3019, 4035, 5348, 7051, 9229, 12022, 15565, 20063, 25722, 32847, 41746, 52862, 66657, 83768, 104873, 130889, 162797, 201902, 249620, 307789, 378428, 464122, 567721, 692828, 843448
Offset: 0

Views

Author

Gus Wiseman, Jun 08 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(r-1) times the number of odd parts, where r is the greatest part, so a(n) is the number of integer partitions of 2n with exactly two odd parts, neither of which is the greatest.
Also the number of reversed integer partitions of 2n with alternating sum -2.

Examples

			The a(2) = 1 through a(6) = 14 partitions:
  (31)  (42)    (53)      (64)        (75)
        (3111)  (3221)    (3331)      (4332)
                (4211)    (4222)      (4431)
                (311111)  (4321)      (5322)
                          (5311)      (5421)
                          (322111)    (6411)
                          (421111)    (322221)
                          (31111111)  (333111)
                                      (422211)
                                      (432111)
                                      (531111)
                                      (32211111)
                                      (42111111)
                                      (3111111111)
		

Crossrefs

The version for -1 instead of -2 is A000070.
The non-reversed negative version is A000097.
The ordered version appears to be A001700.
The version for 1 instead of -2 is A035363.
The whole set of partitions of 2n is counted by A058696.
The strict case appears to be A065033.
The version for -1 instead of -2 is A306145.
The version for 2 instead of -2 is A344613.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]==-2&]],{n,0,30,2}]
    - or -
    Table[Length[Select[IntegerPartitions[n],EvenQ[Max[#]]&&Count[#,_?OddQ]==2&]],{n,0,30,2}]

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A357640 Number of reversed integer partitions of 2n whose skew-alternating sum is 0.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 24, 40, 59, 93, 136, 208, 299, 445, 632, 921, 1292, 1848, 2563, 3610, 4954, 6881, 9353, 12835, 17290, 23469, 31357, 42150, 55889, 74463, 98038, 129573, 169476, 222339, 289029, 376618, 486773, 630313, 810285, 1043123, 1334174
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			The a(0) = 1 through a(5) = 9 partitions:
  ()  (11)  (22)    (33)      (44)        (55)
            (1111)  (2211)    (2222)      (3322)
                    (111111)  (3221)      (4321)
                              (3311)      (4411)
                              (221111)    (222211)
                              (11111111)  (322111)
                                          (331111)
                                          (22111111)
                                          (1111111111)
		

Crossrefs

The non-reverse half-alternating version is A035363/A035444.
The non-reverse version appears to be A035544/A035594.
These partitions are ranked by A357632, half A357631.
The half-alternating version is A357639.
A000041 counts integer partitions (also reversed integer partitions).
A316524 gives alternating sum of prime indices, reverse A344616.
A344651 counts alternating sum of partitions by length, ordered A097805.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[2n],skats[Reverse[#]]==0&]],{n,0,15}]

Extensions

a(31) onwards from Lucas A. Brown, Oct 19 2022
Previous Showing 31-40 of 142 results. Next