cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 104 results. Next

A378780 a(n) = n * 2^n * binomial(3*n, n).

Original entry on oeis.org

0, 6, 120, 2016, 31680, 480480, 7128576, 104186880, 1506244608, 21596889600, 307660953600, 4359995228160, 61522462310400, 865005820084224, 12124867905454080, 169509237023047680, 2364380454476316672, 32913250644698726400, 457355892992216924160, 6345297974846973542400
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004. See p. 26.

Crossrefs

Programs

  • Mathematica
    a[n_] := n * 2^n * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n * 2^n * binomial(3*n, n);

Formula

a(n) = A036289(n) * A005809(n).
a(n) = n * A228484(n).
a(n) == 0 (mod 6).
Sum_{n>=1} 1/a(n) = Pi/10 - log(2)/5 (Borwein et al., 2004; Borwein and Girgensohn, 2005; Batir, 2005).

A378804 a(n) = n * 2^n * binomial(4*n, n).

Original entry on oeis.org

0, 8, 224, 5280, 116480, 2480640, 51684864, 1060899840, 21541478400, 433812234240, 8680043806720, 172774871965696, 3424347806171136, 67626404043161600, 1331466198928588800, 26145958720005734400, 512257621575157678080, 10016204637370583089152, 195501127311163895316480
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n * 2^n * Binomial[4*n, n]; Array[a, 20, 0]
  • PARI
    a(n) = n * 2^n * binomial(4*n, n);

Formula

a(n) = A036289(n) * A005810(n).
a(n) = 2^n * A378802(n).
a(n) == 0 (mod 8).
Sum_{n>=1} (-1)^n/a(n) = (log(2) - 6*log(3))/7 + Sum_{r: 2*r^3 + 12*r + 13 = 0} log(r+2)/(r+3) = -0.120716907732393305... (Borwein and Girgensohn, 2005, p. 32, eq. (43)).

A046688 Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 9, 9, 1, 1, 6, 9, 13, 17, 17, 1, 1, 7, 11, 17, 25, 33, 33, 1, 1, 8, 13, 21, 33, 49, 65, 65, 1, 1, 9, 15, 25, 41, 65, 97, 129, 129, 1, 1, 10, 17, 29, 49, 81, 129, 193, 257, 257, 1, 1, 11, 19, 33, 57, 97, 161, 257, 385, 513, 513, 1
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, May 08 2021: (Start):
Array A(m,n) = 1 + n*2^(m-1) begins:
       n=0: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9:
  m=0:   1    1    1    1    1    1    1    1    1    1
  m=1:   1    2    3    5    9   17   33   65  129  257
  m=2:   1    3    5    9   17   33   65  129  257  513
  m=3:   1    4    7   13   25   49   97  193  385  769
  m=4:   1    5    9   17   33   65  129  257  513 1025
  m=5:   1    6   11   21   41   81  161  321  641 1281
  m=6:   1    7   13   25   49   97  193  385  769 1537
  m=7:   1    8   15   29   57  113  225  449  897 1793
  m=8:   1    9   17   33   65  129  257  513 1025 2049
  m=9:   1   10   19   37   73  145  289  577 1153 2305
Triangle T(n,k) = 1 + (n-k)*2^(k-1) begins:
   1
   1   1
   1   2   1
   1   3   3   1
   1   4   5   5   1
   1   5   7   9   9   1
   1   6   9  13  17  17   1
   1   7  11  17  25  33  33   1
   1   8  13  21  33  49  65  65   1
   1   9  15  25  41  65  97 129 129   1
   1  10  17  29  49  81 129 193 257 257   1
   1  11  19  33  57  97 161 257 385 513 513   1
(End)
		

References

  • G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers, Vol. VII, p. 430.

Crossrefs

Row sums are A000079.
Diagonal n = m + 1 of the array is A002064.
Diagonal n = m of the array is A005183.
Column m = 1 of the array is A094373.
Diagonal n = m - 1 of the array is A131056.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A009998(k,n) = n^k.
A009999(n,k) = n^k.
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.

Programs

  • Mathematica
    Table[If[k==0,1,n*2^(k-1)+1],{n,0,9},{k,0,9}] (* ARRAY, Gus Wiseman, May 08 2021 *)
    Table[If[k==0,1,1+(n-k)*2^(k-1)],{n,0,10},{k,0,n}] (* TRIANGLE, Gus Wiseman, May 08 2021 *)
  • PARI
    A(m,n)={if(m>0, 1+n*2^(m-1), 1)}
    { for(m=0, 10, for(n=0, 10, print1(A(m,n), ", ")); print) } \\ Andrew Howroyd, Mar 07 2020

Formula

A(m,n) = 1 + n*2^(m-1) for m > 1. - Andrew Howroyd, Mar 07 2020
As a triangle, T(n,k) = A(k,n-k) = 1 + (n-k)*2^(k-1). - Gus Wiseman, May 08 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 06 2000

A069229 a(n) = n*(2^n + 1).

Original entry on oeis.org

0, 3, 10, 27, 68, 165, 390, 903, 2056, 4617, 10250, 22539, 49164, 106509, 229390, 491535, 1048592, 2228241, 4718610, 9961491, 20971540, 44040213, 92274710, 192938007, 402653208, 838860825, 1744830490, 3623878683, 7516192796
Offset: 0

Views

Author

Vladeta Jovovic, Apr 12 2002

Keywords

Comments

Odd terms are multiples of 3. - Dario Piazzalunga, Jan 10 2013

Crossrefs

Cf. A066524.

Programs

Formula

Recurrence: a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: x*(3 - 8*x + 6*x^2)/(1-x)^2/(1 - 2*x)^2.
a(n) = n+A036289(n). - R. J. Mathar, Jun 17 2020

A116138 a(n) = 3^n * n*(n + 1).

Original entry on oeis.org

0, 6, 54, 324, 1620, 7290, 30618, 122472, 472392, 1771470, 6495390, 23383404, 82904796, 290166786, 1004423490, 3443737680, 11708708112, 39516889878, 132497807238, 441659357460, 1464449448420, 4832683179786, 15878816162154
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 08 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 6*x/(1-3*x)^3.
a(n) = 6 * A027472(n+2). (End)
a(n) = 9*a(n-1) -27*a(n-2) +27*a(n-3). - Vincenzo Librandi, Feb 28 2013
E.g.f.: 3*x*(2 + 3*x)*exp(3*x). - G. C. Greubel, May 10 2019
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = 1 - 2*log(3/2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(4/3) - 1. (End)

A128988 a(n) = (n^3 - n^2)*5^n.

Original entry on oeis.org

0, 100, 2250, 30000, 312500, 2812500, 22968750, 175000000, 1265625000, 8789062500, 59082031250, 386718750000, 2475585937500, 15551757812500, 96130371093750, 585937500000000, 3527832031250000, 21011352539062500
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 30 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n^2)*5^n: n in [1..30]]; // Vincenzo Librandi, Oct 26 2011
  • Mathematica
    Table[(n^3-n^2)5^n,{n,20}] (* or *) LinearRecurrence[{20,-150,500,-625},{0,100,2250,30000},20]

Formula

a(1)=0, a(2)=100, a(3)=2250, a(4)=30000, a(n)=20*a(n-1)- 150*a(n-2)+ 500*a(n-3)- 625*a(n-4). - Harvey P. Dale, Oct 25 2011
G.f.: (50*(5*x^2+2*x))/(5*x-1)^4. - Harvey P. Dale, Oct 25 2011

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008

A171647 a(1) = 1; for n > 1, a(n) = 2*a(n-1) if n is even, a(n) = ((n+1)/(n-1))*a(n-1) if n is odd.

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 32, 64, 80, 160, 192, 384, 448, 896, 1024, 2048, 2304, 4608, 5120, 10240, 11264, 22528, 24576, 49152, 53248, 106496, 114688, 229376, 245760, 491520, 524288, 1048576, 1114112, 2228224, 2359296, 4718592, 4980736, 9961472
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

a(n) is the number of subsets of {1,2,...,n} that contain exactly one odd number. For example, for n=5, a(5)=12 and the 12 subsets are {1}, {3}, {5}, {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,4}, {2,3,4}, {2,4,5}. - Enrique Navarrete, Dec 15 2019
2*a(n-1) is the number of subsets of {1,2,...,n} that contain exactly one even number. For example, for n=5, 2*a(4)=16 and the 16 subsets are {2}, {4}, {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}, {1,2,3,5}, {1,3,4,5}. - Enrique Navarrete, Dec 16 2019

Examples

			a(6) = 2*a(5) = 2*12 = 24;
a(7) = (8/6)*a(6) = (4/3)*24 = 32.
		

Crossrefs

Cf. A001787, A036289 (bisections).
Cf. A016631.

Programs

  • Magma
    [ n eq 1 select 1 else IsEven(n) select 2*Self(n-1) else ((n+1)/(n-1))*Self(n-1): n in [1..40] ];
  • Mathematica
    a[n_] := If[ OddQ@ n, (n + 1)/(n - 1) a[n - 1] , 2 a[n - 1]]; a[1] = 1; Array[a, 38]
    LinearRecurrence[{0,4,0,-4},{1,2,4,8},40] (* Harvey P. Dale, Jan 14 2015 *)

Formula

From R. J. Mathar, Dec 06 2010: (Start)
a(n) = 4*a(n-2) - 4*a(n-4).
G.f.: x*(1+2*x)/(-1+2*x^2)^2. (End)
a(n) = (2*n - (-1)^n+1)*2^((2*n + (-1)^n - 9)/4). - Bruno Berselli, Dec 07 2010
G.f.: G(0), where G(k) = 1 + 2*x*(k+1)/(k + 1 - x*(k+1)*(k+2)/(x*(k+2) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 27 2013
Sum_{n>=1} 1/a(n) = 3*log(2) (A016631). - Amiram Eldar, Aug 27 2022

A190730 Let b(n,0) = n and b(n,k) = 2*b(n,k-1) + 1 for k > 0. Then a(n) = b(n,1) + b(n,2) + ... + b(n,n).

Original entry on oeis.org

3, 16, 53, 146, 367, 876, 2025, 4582, 10211, 22496, 49117, 106458, 229335, 491476, 1048529, 2228174, 4718539, 9961416, 20971461, 44040130, 92274623, 192937916, 402653113, 838860726, 1744830387, 3623878576, 7516192685, 15569256362, 32212254631, 66571992996
Offset: 1

Views

Author

J. M. Bergot, May 17 2011

Keywords

Comments

It turns out that b(n,k) = A087322(n,k) = (n + 1)*2^k - 1 for 1 <= k <= n (without the 0th column). - Petros Hadjicostas, Feb 15 2021

Examples

			One way to view it is to begin with n = 5, then 5 + 6 = 11 --> 11 + 12 = 23 --> 23 + 24 = 47 --> 47 + 48 = 95 --> 95 + 96 = 191. There are n steps, in this case 5, that give the sum 11 + 23 + 47 + 95 + 191 = 367. This is the same as (2*5+1) + (4*5+3) + (8*5+7) + (16*5+15) + (32*5+31). The formula gives (5+1)*2^(5+1) - 3*5 - 2 = 6*64 - 17 = 367.
		

Crossrefs

Programs

  • Magma
    [(n+1) * 2^(n+1) - 3*n - 2 : n in [1..30]]; // Vincenzo Librandi, Sep 29 2011
  • Mathematica
    LinearRecurrence[{6,-13,12,-4},{3,16,53,146},40] (* or *)
    Array[(#+1)2^(#+1)-3#-2&,40] (* Paolo Xausa, Oct 17 2023 *)

Formula

a(n) = (n+1) * 2^(n+1) - 3*n - 2 = A036289(n+1) - A016789(n).
G.f.: -x*(-3 + 2*x + 4*x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, May 29 2011
E.g.f.: exp(x)*(2*exp(x)*(1 + 2*x) - 2 - 3*x). - Stefano Spezia, Oct 16 2023

A204207 Triangle based on (1,2,3) averaging array.

Original entry on oeis.org

2, 3, 5, 5, 8, 11, 9, 13, 19, 23, 17, 22, 32, 42, 47, 33, 39, 54, 74, 89, 95, 65, 72, 93, 128, 163, 184, 191, 129, 137, 165, 221, 291, 347, 375, 383, 257, 266, 302, 386, 512, 638, 722, 758, 767, 513, 523, 568, 688, 898, 1150, 1360, 1480, 1525, 1535, 1025
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

See A204201 for a discussion and guide to other averaging arrays.

Examples

			First six rows:
2
3....5
5....8....11
9....13...19...23
17...22...32...42...47
33...39...54...74...89...95
		

Crossrefs

Cf. A204201.

Programs

  • Mathematica
    a = 1; r = 2; b = 3;
    t[1, 1] = r;
    t[n_, 1] := (a + t[n - 1, 1])/2;
    t[n_, n_] := (b + t[n - 1, n - 1])/2;
    t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
    u[n_] := Table[t[n, k], {k, 1, n}]
    Table[u[n], {n, 1, 5}]    (* averaging array *)
    u = Table[2 (1/2) (1/r) 2^n*u[n], {n, 1, 12}];
    TableForm[u] (* A204207 triangle *)
    Flatten[u]   (* A204207 sequence *)

Formula

T(n,n) = A083329(n). - Philippe Deléham, Dec 24 2013
T(n,1) = A000051(n-1). - Philippe Deléham, Dec 24 2013
Sum_{k=1..n} T(n,k)=A036289(n). - Philippe Deléham, Dec 24 2013
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k-1) - 2*T(n-2,k-2), T(1,1)=2, T(2,1)=3, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. - Philippe Deléham, Dec 24 2013

Extensions

Example corrected by Philippe Deléham, Dec 22 2013

A344041 Decimal expansion of Sum_{k>=1} F(k)/(k*2^k), where F(k) is the k-th Fibonacci number (A000045).

Original entry on oeis.org

8, 6, 0, 8, 1, 7, 8, 8, 1, 9, 2, 8, 0, 0, 8, 0, 7, 7, 7, 7, 8, 8, 6, 6, 4, 6, 5, 9, 0, 1, 2, 1, 0, 8, 5, 0, 8, 4, 9, 1, 4, 1, 3, 6, 5, 0, 8, 0, 5, 7, 9, 3, 0, 9, 5, 1, 4, 0, 1, 2, 2, 0, 7, 9, 8, 5, 1, 2, 2, 4, 3, 0, 9, 2, 2, 2, 6, 3, 9, 2, 2, 7, 2, 2, 9, 8, 0
Offset: 0

Views

Author

Amiram Eldar, May 07 2021

Keywords

Comments

This constant is a transcendental number (Adhikari et al., 2001).
A similar series is Sum_{k>=1} F(k)/2^k = 2.
The corresponding series with Lucas numbers (A000032) is Sum_{k>=1} L(k)/(k*2^k) = 2*log(2) (A016627).
In general, for m>=2, Sum_{k>=1} F(k)/(k*m^k) = log(1 - 2*sqrt(5)/(1 + sqrt(5) - 2*m)) / sqrt(5) and Sum_{k>=1} L(k)/(k*m^k) = log(m^2 / (m^2 - m - 1)). - Vaclav Kotesovec, May 08 2021

Examples

			0.86081788192800807777886646590121085084914136508057...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[Fibonacci[n]/n/2^n, {n, 1, Infinity}], 10, 100][[1]]
  • PARI
    suminf(k=1, fibonacci(k)/(k*2^k)) \\ Michel Marcus, May 07 2021

Formula

Equals Sum_{k>=0} (-1)^k/A002457(k).
Equals 4*log(phi)/sqrt(5) = 4*arcsinh(1/2)/sqrt(5) = arccosh(7/2)/sqrt(5) = 4*A002390/A002163.
Equals Integral_{x>=2} 1/(x^2 - x - 1) dx.
Previous Showing 41-50 of 104 results. Next