A097726
Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n >= 0.
Original entry on oeis.org
1, 103, 10505, 1071407, 109273009, 11144775511, 1136657829113, 115927953794015, 11823514629160417, 1205882564220568519, 122988198035868828521, 12543590317094399940623, 1279323224145592925115025, 130478425272533383961791927, 13307520054574259571177661529
Offset: 0
(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 = -1.
Cf.
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121. -
Artur Jasinski, Feb 10 2010
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in
A097775.
-
Table[(1/5) Round[N[Sinh[(2 n - 1) ArcSinh[5]], 100]], {n, 1, 50}] (* Artur Jasinski, Feb 10 2010 *)
CoefficientList[Series[(1 + x)/(1 - 102 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
LinearRecurrence[{102,-1},{1,103},20] (* Harvey P. Dale, Aug 20 2017 *)
-
x='x+O('x^99); Vec((1+x)/(1-102*x+x^2)) \\ Altug Alkan, Apr 05 2018
A214398
Triangle where the g.f. of column k is 1/(1-x)^(k^2) for k>=1, as read by rows n>=1.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 10, 9, 1, 1, 20, 45, 16, 1, 1, 35, 165, 136, 25, 1, 1, 56, 495, 816, 325, 36, 1, 1, 84, 1287, 3876, 2925, 666, 49, 1, 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1, 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1, 1, 220, 12870, 170544
Offset: 1
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1;
1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1;
1, 220, 12870, 170544, 593775, 658008, 270725, 45760, 3321, 100, 1; ...
-
A214398 := proc(n,k)
binomial(k^2+n-k-1,n-k) ;
end proc:
seq(seq(A214398(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 03 2017
-
nmax = 11;
T[n_, k_] := SeriesCoefficient[1/(1-x)^(k^2), {x, 0, n-k}];
Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten
-
T(n,k)=binomial(k^2+n-k-1,n-k)
for(n=1,11,for(k=1,n,print1(T(n,k),", "));print(""))
A229417
T(n,k) = number of n X n 0..k zero-diagonal arrays with corresponding row and column sums equal.
Original entry on oeis.org
1, 1, 2, 1, 3, 10, 1, 4, 45, 152, 1, 5, 136, 4743, 7736, 1, 6, 325, 59008, 3801411, 1375952, 1, 7, 666, 426425, 345706336, 23938685973, 877901648, 1, 8, 1225, 2164680, 11782824375, 28256240134144, 1215663478473627, 2046320373120, 1, 9, 2080
Offset: 1
Some solutions for n=4 k=4
..0..0..2..0....0..1..0..4....0..0..1..3....0..1..1..4....0..1..1..0
..1..0..2..1....2..0..4..0....1..0..2..3....4..0..2..3....0..0..1..2
..1..2..0..4....2..4..0..2....2..3..0..1....1..4..0..1....0..0..0..4
..0..2..3..0....1..1..4..0....1..3..3..0....1..4..3..0....2..2..2..0
A337953
Number of achiral colorings of the 30 edges of a regular dodecahedron or icosahedron using n or fewer colors.
Original entry on oeis.org
1, 33328, 32524281, 4312863360, 191243490675, 4239501280272, 58236754527707, 563536359633920, 4172726943804861, 25016666666700400, 126431377927701253, 554909560378102656, 2163457078062360639, 7625429483925609552, 24638829565429941975
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
Other elements:
A337960 (dodecahedron vertices, icosahedron faces),
A337962 (dodecahedron faces, icosahedron vertices).
A071237
a(n) = n*(n+1)*(n^2+1)/2.
Original entry on oeis.org
0, 2, 15, 60, 170, 390, 777, 1400, 2340, 3690, 5555, 8052, 11310, 15470, 20685, 27120, 34952, 44370, 55575, 68780, 84210, 102102, 122705, 146280, 173100, 203450, 237627, 275940, 318710, 366270, 418965, 477152, 541200, 611490, 688415, 772380, 863802, 963110
Offset: 0
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
-
[n*(n+1)*(n^2+1)/2: n in [0..40] ]; // Vincenzo Librandi, May 23 2011
-
Table[(n^4 + n^3 + n^2 + n)/2, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)
LinearRecurrence[{5,-10,10,-5,1},{0,2,15,60,170},40] (* Harvey P. Dale, Feb 08 2025 *)
-
def A071237(n): return (n^2+1)*binomial(n+1,2)
[A071237(n) for n in range(51)] # G. C. Greubel, Aug 05 2024
A133823
Triangle whose rows are sequences of increasing and decreasing cubes:1; 1,8,1; 1,8,27,8,1; ... .
Original entry on oeis.org
1, 1, 8, 1, 1, 8, 27, 8, 1, 1, 8, 27, 64, 27, 8, 1, 1, 8, 27, 64, 125, 64, 27, 8, 1, 1, 8, 27, 64, 125, 216, 125, 64, 27, 8, 1, 1, 8, 27, 64, 125, 216, 343, 216, 125, 64, 27, 8, 1, 1, 8, 27, 64, 125, 216, 343, 512, 343, 216, 125, 64, 27, 8, 1, 1, 8, 27, 64, 125, 216, 343, 512, 729
Offset: 0
Triangle starts
1;
1, 8, 1;
1, 8, 27, 8, 1;
1, 8, 27, 64, 27, 8, 1;
From _Boris Putievskiy_, Jan 13 2013: (Start)
The start of the sequence as table:
1...1...1...1...1...1...
1...8...8...8...8...8...
1...8..27..27..27..27...
1...8..27..64..64..64...
1...8..27..64.125.125...
1...8..27..64.125.216...
. . .
The start of the sequence as triangle array read by rows:
1;
1,8,1;
1,8,27,8,1;
1,8,27,64,27,8,1;
1,8,27,64,125,64,27,8,1;
1,8,27,64,125,216,125,64,27,8,1;
. . .
Row number k contains 2*k-1 numbers 1,8,...,(k-1)^3,k^3,(k-1)^3,...,8,1. (End)
-
Table[Join[Range[n]^3,Range[n-1,1,-1]^3],{n,10}]//Flatten (* Harvey P. Dale, May 29 2019 *)
A329636
Numbers that are sums of consecutive centered cube numbers (A005898).
Original entry on oeis.org
1, 9, 10, 35, 44, 45, 91, 126, 135, 136, 189, 280, 315, 324, 325, 341, 530, 559, 621, 656, 665, 666, 855, 900, 1089, 1180, 1215, 1224, 1225, 1241, 1414, 1729, 1755, 1944, 2035, 2070, 2079, 2080, 2096, 2331, 2655, 2970, 2996, 3059, 3185, 3276, 3311, 3320, 3321, 3825, 3925
Offset: 1
A182427
Triangular numbers that can be represented as a sum of a nonzero square number and a nonzero triangular number.
Original entry on oeis.org
10, 15, 28, 45, 55, 91, 136, 190, 210, 231, 253, 325, 378, 406, 435, 496, 561, 595, 666, 703, 741, 820, 861, 903, 946, 990, 1081, 1128, 1176, 1225, 1378, 1431, 1540, 1596, 1711, 1770, 1830, 1891, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2701, 2926, 3160, 3321
Offset: 1
10, 15, 28 are in the sequence because 10 = 2^2 + 3*4/2 = 3^2 + 1*2/2, 15 = 3^2 + 3*4/2, 28 = 5^2 + 2*3/2.
-
isok(t) = {for (k=1, sqrtint(t), my(tt = t - k^2); if ((tt) && ispolygonal(tt, 3), return (1)););}
lista(nn) = {for (n=1, nn, my(t = n*(n+1)/2); if (isok(t), print1(t, ", ")););} \\ Michel Marcus, Nov 25 2015
A322844
a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2)).
Original entry on oeis.org
0, 0, 5, 6, 68, 50, 333, 196, 1040, 540, 2525, 1210, 5220, 2366, 9653, 4200, 16448, 6936, 26325, 10830, 40100, 16170, 58685, 23276, 83088, 32500, 114413, 44226, 153860, 58870, 202725, 76880, 262400, 98736, 334373, 124950, 420228, 156066, 521645, 192660, 640400, 235340
Offset: 0
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Wikipedia, Characteristic polynomial
- Wikipedia, Exterior algebra
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-10,0,10,0,-5,0,1).
Cf.
A317614 (trace of matrix M(n)).
-
Flat(List([0..50], n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2))));
-
[IsEven(n) select (1/4)*n^2*(1 + n^2) else (1/12)*(- 1 + n)*n^2*(1 + n): n in [0..50]];
-
a:=n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*modp(n,2)): seq(a(n), n=0..50);
-
a[n_]:=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*Mod[n,2]); Array[a,50,0]
LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{0,0,5,6,68,50,333,196,1040,540},50] (* Harvey P. Dale, Aug 23 2025 *)
-
a(n):=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*mod(n,2))$ makelist(a(n), n, 0, 50);
-
a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n % 2));
-
a(n) = abs(polcoeff(charpoly(matrix(n, n, i, j, if (i %2, j + n*(i-1), n*i - j + 1))), n-2)); \\ Michel Marcus, Feb 06 2019
-
[int(n**2*(3*(1 + n**2) - 2*(2 + n**2)*pow(n, 1, 2))/12) for n in range(0,50)]
A341736
a(n) is the label of the square of the n-th element in the semigroup S = {(0,0), (i,j): i >= j >= 1}.
Original entry on oeis.org
0, 1, 7, 10, 37, 40, 45, 121, 124, 129, 136, 301, 304, 309, 316, 325, 631, 634, 639, 646, 655, 666, 1177, 1180, 1185, 1192, 1201, 1212, 1225, 2017, 2020, 2025, 2032, 2041, 2052, 2065, 2080, 3241, 3244, 3249, 3256, 3265, 3276, 3289, 3304, 3321, 4951, 4954, 4959
Offset: 0
-
t:= n-> n*(n-1)/2:
f:= n-> ceil((sqrt(1+8*n)-1)/2):
g:= n-> (x-> [x, n-t(x)])(f(n)):
a:= n-> (h-> t(h[1]^2)+h[2]^2)(g(n)):
seq(a(n), n=0..60);
-
t[n_] := n*(n - 1)/2;
f[n_] := Ceiling[(Sqrt[1 + 8*n] - 1)/2];
g[n_] := Function[x, {x, n - t[x]}][f[n]];
a[n_] := Function[h, t[h[[1]]^2] + h[[2]]^2][g[n]];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)
Comments