cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A065333 Characteristic function of 3-smooth numbers, i.e., numbers of the form 2^i*3^j (i, j >= 0).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Dirichlet inverse of b(n) where b(n) = 0 except for: b(1) = b(6) = -b(2) = -b(3) = 1. - Alexander Adam, Dec 26 2012

Crossrefs

Characteristic function of A003586.
Cf. A000265, A007814, A007949, A038502, A065330, A065332, A071521 (partial sums), A072078 (inverse Möbius transform).

Programs

  • Haskell
    a065333 = fromEnum . (== 1) . a038502 . a000265
    -- Reinhard Zumkeller, Jan 08 2013, Apr 12 2012
    
  • Mathematica
    a[n_] := Boole[ 2^IntegerExponent[n, 2] * 3^IntegerExponent[n, 3] == n]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 16 2013, after Charles R Greathouse IV *)
  • PARI
    a(n)=sumdiv(n,d,moebius(6*d)) \\ Benoit Cloitre, Oct 18 2009
    
  • PARI
    a(n)=3^valuation(n,3)<Charles R Greathouse IV, Aug 21 2011
    
  • Python
    from sympy import multiplicity
    def A065333(n): return int(3**(multiplicity(3,m:=n>>(~n&n-1).bit_length()))==m) # Chai Wah Wu, Dec 20 2024

Formula

a(n) = if n = A003586(k) for some k then 1 else 0.
a(n) = signum(A065332(n)), where signum = A057427.
a(n) = if A065330(n) = 1 then 1 else 0 = 1 - signum(A065330(n) - 1).
a(n) = Product_{p prime and p|n} 0^floor(p/4). - Reinhard Zumkeller, Nov 19 2004
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = 0 for prime p > 3. Dirichlet g.f. 1/(1-2^-s)/(1-3^-s). - Franklin T. Adams-Watters, Sep 01 2006
a(n) = 0^(A038502(A000265(n)) - 1). - Reinhard Zumkeller, Sep 28 2008
a(n) = Sum_{d|n} mu(6*d). - Benoit Cloitre, Oct 18 2009

A132739 Largest divisor of n not divisible by 5.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 3, 16, 17, 18, 19, 4, 21, 22, 23, 24, 1, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 36, 37, 38, 39, 8, 41, 42, 43, 44, 9, 46, 47, 48, 49, 2, 51, 52, 53, 54, 11, 56, 57, 58, 59, 12, 61, 62, 63, 64, 13, 66, 67, 68, 69, 14, 71, 72, 73, 74, 3, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

A000265(a(n)) = a(A000265(n)) = A132740(n).
a(n) = A060791(n) when n is not divisible by 5. When n is divisible by 5 a(n) divides A060791(n). Tom Edgar, Feb 08 2014
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (4*5)*G(x^5) - (4*25)*G(x^25) - (4*125)*G(x^125) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (4/5)*H(x^5) - (4/25)*H(x^25) - (4/125)*H(x^125) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (4/5^2)*L(x^5) - (4/25^2)*L(x^25) - (4/125^2)*L(x^125) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (4/5)*L(x^5) + (4/5)*L(x^25) + (4/5)*L(x^125) + ....
(End)
		

Crossrefs

Programs

Formula

a(n) = n/A060904(n). Dirichlet g.f.: zeta(s-1)*(5^s-5)/(5^s-1). - R. J. Mathar, Jul 12 2012
a(n) = n/5^A112765(n). See A060904. - Wolfdieter Lang, Jun 18 2014
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,5^n).
O.g.f.: F(x) - 4*F(x^5) - 4*F(x^25) - 4*F(x^125) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (5^m - 1)(F(m,x^5) + F(m,x^25) + F(m,x^125) + ...), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 28 2022

A065881 Ultimate modulo 10: right-hand nonzero digit of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Henry Bottomley, Nov 26 2001

Keywords

Examples

			a(3)=3, a(23)=3, a(30)=3, a(12300)=3.
		

Crossrefs

In base 2 this is A000012, base 3 A060236 and base 4 A065882. For n <= 100 this sequence is also "Remove final zeros from n" which in bases 2, 3 and 4 produces A000265, A038502 and A065883. Cf. A010879.

Programs

  • Mathematica
    um10[n_]:=Module[{idns=Split[IntegerDigits[n]]},If[idns[[-1,1]] == 0, idns[[-2,1]], idns[[-1,1]]]]; Array[um10,110] (* Harvey P. Dale, Dec 26 2016 *)
  • PARI
    a(n) = { n/10^valuation(n,10)%10 } \\ Harry J. Smith, Nov 03 2009
    
  • Python
    def A065881(n): return int(str(n).rstrip('0')[-1]) # Chai Wah Wu, Dec 07 2023

Formula

If n mod 10 = 0 then a(n) = a(n/10), otherwise a(n) = n mod 10.

A065883 Remove factors of 4 from n (i.e., write n in base 4, drop final zeros, then rewrite in decimal).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 27, 7, 29, 30, 31, 2, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 54, 55, 14, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71, 18, 73, 74, 75
Offset: 1

Views

Author

Henry Bottomley, Nov 26 2001

Keywords

Examples

			a(7)=7, a(14)=14, a(28)=a(4*7)=7, a(56)=a(4*14)=14, a(112)=a(4^2*7)=7.
		

Crossrefs

Cf. A214392, A235127, A350091 (drop final 2's).
Remove other factors: A000265, A038502, A132739, A244414, A242603, A004151.

Programs

  • Maple
    A065883:= n -> n/4^floor(padic:-ordp(n,2)/2):
    map(A065883, [$1..1000]); # Robert Israel, Dec 08 2015
  • Mathematica
    If[Divisible[#,4],#/4^IntegerExponent[#,4],#]&/@Range[80] (* Harvey P. Dale, Aug 31 2013 *)
  • PARI
    a(n)=n/4^valuation(n,4); \\ Joerg Arndt, Dec 09 2015
    
  • Python
    def A065883(n): return n>>((~n&n-1).bit_length()&-2) # Chai Wah Wu, Jul 09 2022

Formula

If n mod 4 = 0 then a(n) = a(n/4), otherwise a(n) = n.
Multiplicative with a(p^e) = 2^(e (mod 2)) if p = 2 and a(p^e) = p^e if p is an odd prime.
a(n) = n/4^A235127(n).
a(n) = A214392(n) if n mod 16 != 0. - Peter Kagey, Sep 02 2015
From Robert Israel, Dec 08 2015: (Start)
G.f.: x/(1-x)^2 - 3 Sum_{j>=1} x^(4^j)/(1-x^(4^j))^2.
G.f. satisfies G(x) = G(x^4) + x/(1-x)^2 - 4 x^4/(1-x^4)^2. (End)
Sum_{k=1..n} a(k) ~ (2/5) * n^2. - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(s-1)*(4^s-4)/(4^s-1). - Amiram Eldar, Jan 04 2023

A264974 Self-inverse permutation of natural numbers: a(n) = A263273(4*n) / 4.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 19, 12, 13, 14, 15, 8, 17, 18, 11, 20, 21, 34, 43, 48, 25, 52, 27, 28, 55, 30, 37, 46, 57, 22, 49, 36, 31, 58, 39, 40, 41, 42, 23, 50, 45, 32, 59, 24, 35, 44, 51, 26, 53, 54, 29, 56, 33, 38, 47, 60, 61, 142, 63, 88, 169, 102, 115, 124, 129, 70, 151, 144, 97, 178, 75, 106, 133, 156, 79, 160, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Terms of A264986 halved.
Cf. also A264975, A264976.

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(4*n)/4 # Indranil Ghosh, May 25 2017

Formula

a(n) = A263273(4*n) / 4.
a(n) = A264986(n) / 2 = A263272(2*n) / 2.
As a composition of related permutations:
a(n) = A264975(A263272(n)) = A263272(A264976(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]
A264978(n) = a(2n)/2. [Thus the restriction onto even numbers induces yet another permutation.]

A264985 Self-inverse permutation of nonnegative integers: a(n) = (A264983(n)-1) / 2.

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 5, 7, 11, 8, 13, 27, 18, 28, 36, 15, 19, 33, 24, 31, 30, 21, 37, 39, 14, 16, 32, 23, 22, 29, 20, 34, 38, 17, 25, 35, 26, 40, 81, 54, 82, 108, 45, 55, 99, 72, 85, 90, 63, 109, 117, 42, 46, 96, 69, 58, 87, 60, 100, 114, 51, 73, 105, 78, 94, 84, 57, 91, 111, 48, 64, 102, 75, 112, 93, 66, 118, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; t = Select[f /@ Range@ 1000, OddQ]; Table[(t[[n + 1]] - 1)/2, {n, 0, 81}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return (a263273(2*n + 1) - 1)/2 # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A264985 n) (/ (- (A264983 n) 1) 2))
    

Formula

a(n) = (A264983(n)-1) / 2 = (1/2) * (A263273(2n + 1) - 1).

A035191 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 9.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 2, 4, 1, 4, 2, 3, 2, 4, 2, 5, 2, 2, 2, 6, 2, 4, 2, 4, 3, 4, 1, 6, 2, 4, 2, 6, 2, 4, 4, 3, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 5, 3, 6, 2, 6, 2, 2, 4, 8, 2, 4, 2, 6, 2, 4, 2, 7, 4, 4, 2, 6, 2, 8, 2, 4, 2, 4, 3, 6, 4, 4, 2, 10, 1
Offset: 1

Views

Author

Keywords

Comments

Number of divisors of n not congruent to 0 mod 3. - Vladeta Jovovic, Oct 26 2001
a(n) is the number of factors (over Q) of the polynomial x^(2n) + x^n + 1 . a(n) = d(3n) - d(n) where d() is the divisor function. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Equals Mobius transform of A011655. - Gary W. Adamson, Apr 24 2009

Crossrefs

Programs

  • Haskell
    a035191 n = a001817 n + a001822 n  -- Reinhard Zumkeller, Nov 26 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(3*n, 3): n in [1..100]]; // Vincenzo Librandi, Jun 03 2019
  • Maple
    for n from 1 to 500 do a := ifactors(n):s := 1:for k from 1 to nops(a[2]) do p := a[2][k][1]:e := a[2][k][2]: if p=3 then b := 1:else b := e+1:fi:s := s*b:od:printf(`%d,`,s); od:
    # alternative
    A035191 := proc(n)
        A001817(n)+A001822(n) ;
    end proc:
    [seq(A035191(n),n=1..100)] ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[9, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
    f[3, e_] := 1; f[p_, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    my(m=9); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(9, d)); \\ Amiram Eldar, Nov 20 2023
    

Formula

Multiplicative with a(3^e)=1 and a(p^e)=e+1 for p<>3.
G.f.: Sum_{k>0} x^k*(1+x^k)/(1-x^(3*k)). - Vladeta Jovovic, Dec 16 2002
a(n) = A001817(n) + A001822(n). [Reinhard Zumkeller, Nov 26 2011]
a(n) = tau(3*n) - tau(n). - Ridouane Oudra, Sep 05 2020
From Amiram Eldar, Nov 27 2022: (Start)
Dirichlet g.f.: zeta(s)^2 * (1 - 1/3^s).
Sum_{k=1..n} a(k) ~ (2*n*log(n) + (4*gamma + log(3) - 2)*n)/3, where gamma is Euler's constant (A001620). (End)
a(n) = Sum_{d|n} Kronecker(9, d). - Amiram Eldar, Nov 20 2023
a(n) = A000005(A038502(n)). - Ridouane Oudra, Sep 30 2024

A265352 Permutation of nonnegative integers: a(n) = A263273(A263272(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 19, 8, 9, 10, 5, 12, 13, 22, 21, 64, 23, 18, 55, 20, 57, 58, 25, 24, 73, 26, 27, 28, 11, 30, 31, 16, 15, 46, 17, 36, 37, 14, 39, 40, 67, 66, 199, 68, 63, 190, 65, 192, 193, 70, 69, 208, 71, 54, 163, 56, 165, 166, 61, 60, 181, 62, 171, 172, 59, 174, 175, 76, 75, 226, 77, 72, 217, 74, 219, 220, 79, 78, 235, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(a263273(2*n)/2) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (define (A265352 n) (A263273 (A263272 n)))
    

Formula

a(n) = A263273(A263272(n)).
As a composition of other related permutations:
a(n) = A265368(A264974(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).

A060236 If n mod 3 = 0 then a(n) = a(n/3), otherwise a(n) = n mod 3.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Henry Bottomley, Mar 21 2001

Keywords

Comments

A cubefree word. Start with 1, apply the morphisms 1 -> 121, 2 -> 122, take limit. See A080846 for another version.
Ultimate modulo 3: n-th digit of terms in "Ana sequence" (see A060032 for definition).
Equals A005148(n) reduced mod 3. In "On a sequence Arising in Series for Pi" Morris Newman and Daniel Shanks conjectured that 3 never divides A005148(n) and D. Zagier proved it. - Benoit Cloitre, Jun 22 2002
Also equals A038502(n) mod 3.
Last nonzero digit in ternary representation of n. - Franklin T. Adams-Watters, Apr 01 2006
a(2*n) = length of n-th run of twos. - Reinhard Zumkeller, Mar 13 2015

Examples

			a(10)=1 since 10=3^0*10 and 10 mod 3=1;
a(72)=2 since 24=3^3*8 and 8 mod 3=2.
		

Crossrefs

Cf. A026225 (indices of 1's), A026179 (indices of 2's).
Cf. A060032 (concatenate 3^n terms).

Programs

  • Haskell
    following Franklin T. Adams-Watters's comment.
    a060236 = head . dropWhile (== 0) . a030341_row
    -- Reinhard Zumkeller, Mar 13 2015
    
  • Magma
    [(Floor(n/3^Valuation(n, 3)) mod 3): n in [1..120]]; // G. C. Greubel, Nov 05 2024
    
  • Mathematica
    Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {1, 2, 2}}] &, {1}, 5] (* Robert G. Wilson v, Mar 04 2005 *)
    Table[Mod[n/3^IntegerExponent[n, 3], 3], {n, 1, 120}] (* Clark Kimberling, Oct 19 2016 *)
    lnzd[m_]:=Module[{s=Split[m]},If[FreeQ[Last[s],0],s[[-1,1]],s[[-2,1]]]]; lnzd/@Table[IntegerDigits[n,3],{n,120}] (* Harvey P. Dale, Oct 19 2018 *)
  • PARI
    a(n)=if(n<1, 0, n/3^valuation(n,3)%3) /* Michael Somos, Nov 10 2005 */
    
  • SageMath
    [n/3^valuation(n, 3)%3 for n in range(1,121)] # G. C. Greubel, Nov 05 2024

Formula

a(3*n) = a(n), a(3*n + 1) = 1, a(3*n + 2) = 2. - Michael Somos, Jul 29 2009
a(n) = 1 + A080846(n). - Joerg Arndt, Jan 21 2013

A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 29, 12, 13, 38, 33, 32, 35, 18, 7, 20, 15, 14, 17, 24, 23, 26, 27, 28, 83, 30, 31, 92, 87, 86, 89, 36, 37, 110, 39, 40, 119, 114, 113, 116, 99, 34, 101, 96, 95, 98, 105, 104, 107, 54, 19, 56, 21, 22, 65, 60, 59, 62, 45, 16, 47, 42, 41, 44, 51, 50, 53, 72, 25, 74, 69, 68, 71, 78, 77, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(n)) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265351 n) (A263272 (A263273 n)))
    

Formula

a(n) = A263272(A263273(n)).
As a composition of other related permutations:
a(n) = A264974(A265367(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
a(n) = A265342(n)/2.
Previous Showing 11-20 of 49 results. Next