cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A038637 Numbers k such that k-th and (k+1)-st term of A038593 differ by 6.

Original entry on oeis.org

65, 251, 253, 258, 349, 518, 537, 715, 860, 932, 934, 997, 1222, 1406, 1465, 1761, 1829, 2128, 2494, 2968, 2974, 2990, 3063, 3307, 3448, 3569, 4113, 4459, 5142, 5334, 5561, 6079, 6309, 6835, 7297, 7308, 7723, 8294, 8325, 8424, 8536, 8904, 9547, 9997, 10959, 11082
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 16 2020

A038662 First gap of n in sequence A038593 (upper terms).

Original entry on oeis.org

218, 63, 127, 335, 61, 1267, 26, 279, 875, 397, 37, 19, 21944, 17512, 331, 485, 169, 6813, 56, 189, 469, 1352, 63511, 3904, 152, 657, 631, 91, 2044, 1981, 55424, 2680, 817, 547, 2107, 2232, 702, 10305, 5528, 85736, 48769, 10565, 2906, 386, 1261, 4447
Offset: 1

Views

Author

Keywords

A093362 Increasing gaps in A038593 (upper terms).

Original entry on oeis.org

19, 56, 91, 271, 602, 784, 1115, 2368, 3752, 4348, 6130, 7254, 13084, 20862, 22904, 28415, 56456, 57547, 75923, 92232, 201970, 268793, 306007, 413532, 422910, 497666, 918729, 1671130, 1710424, 2633408, 3907267, 5663644, 6660144, 6772519
Offset: 0

Views

Author

Jeff Burch, May 11 2004

Keywords

Crossrefs

Cf. A038593.

A181123 Numbers that are the differences of two positive cubes.

Original entry on oeis.org

0, 7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 784, 817, 819, 866, 875, 919, 936, 973
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^3-y^3 = (x-y)(x^2+xy+y^2), the difference of two cubes is a prime number only if x=y+1, in which case all the primes are cuban, see A002407.
The difference can be a square (see A038597), but Fermat's Last Theorem prevents the difference from ever being a cube. Beal's Conjecture implies that there are no higher odd powers in this sequence.
If n is in the sequence, it must be x^3-y^3 where 0 < y <= x < n^(1/2). - Robert Israel, Dec 24 2017

Crossrefs

Cf. A024352 (squares), A147857 (4th powers), A181124-A181128 (5th to 9th powers).

Programs

  • Maple
    N:= 10^4: # to get all terms <= N
    sort(convert(select(`<=`, {0, seq(seq(x^3-y^3, y=1..x-1),x=1..floor(sqrt(N)))}, N),list)); # Robert Israel, Dec 24 2017
  • Mathematica
    nn=10^5; p=3; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]
    With[{nn=60},Take[Union[Abs[Flatten[Differences/@Tuples[ Range[ nn]^3,2]]]], nn]] (* Harvey P. Dale, May 11 2014 *)
  • PARI
    list(lim)=my(v=List([0]),a3); for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim,sqrtnint(a3-lim-1,3)+1,1), a-1, listput(v,a3-b^3))); Set(v) \\ Charles R Greathouse IV, Jan 25 2018

A287326 Triangle read by rows: T(n, k) = 6*k*(n-k) + 1; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 25, 19, 1, 1, 25, 37, 37, 25, 1, 1, 31, 49, 55, 49, 31, 1, 1, 37, 61, 73, 73, 61, 37, 1, 1, 43, 73, 91, 97, 91, 73, 43, 1, 1, 49, 85, 109, 121, 121, 109, 85, 49, 1, 1, 55, 97, 127, 145, 151, 145, 127, 97, 55, 1, 1, 61, 109, 145, 169, 181, 181, 169, 145, 109, 61, 1
Offset: 0

Views

Author

Kolosov Petro, Aug 31 2017

Keywords

Comments

From Kolosov Petro, Apr 12 2020: (Start)
Let A(m, r) = A302971(m, r) / A304042(m, r).
Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.
Then T(n, k) = L(1, n, k), i.e T(n, k) is partial case of L(m, n, k) for m = 1.
T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

Examples

			Triangle begins:
  ----------------------------------------
  k=    0   1   2   3   4   5   6   7   8
  ----------------------------------------
  n=0:  1;
  n=1:  1,  1;
  n=2:  1,  7,  1;
  n=3:  1, 13, 13,  1;
  n=4:  1, 19, 25, 19,  1;
  n=5:  1, 25, 37, 37, 25,  1;
  n=6:  1, 31, 49, 55, 49, 31,  1;
  n=7:  1, 37, 61, 73, 73, 61, 37,  1;
  n=8:  1, 43, 73, 91, 97, 91, 73, 43,  1;
		

Crossrefs

Columns k=0..6 give A000012, A016921, A017533, A161705, A103214, A128470, A158065.
Column sums k=0..4 give A000027, A000567, A051866, A051872, A255185.
Row sums give A001093.
Various cases of L(m, n, k): This sequence (m=1), A300656(m=2), A300785(m=3). See comments for L(m, n, k).
Differences of cubes n^3 are T(A000124(n), 1).

Programs

  • GAP
    Flat(List([0..11],n->List([0..n],k->6*k*(n-k)+1))); # Muniru A Asiru, Oct 09 2018
    
  • Magma
    /* As triangle */ [[6*k*(n-k) + 1: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 26 2018
    
  • Maple
    T := (n, k) -> 6*k*(n-k) + 1:
    seq(seq(T(n, k), k=0..n), n=0..11); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    T[n_, k_] := 6 k (n - k) + 1; Column[Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jun 02 2019 *)
  • PARI
    t(n, k) = 6*k*(n-k)+1
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 9 rows of triangle as follows */
    trianglerows(9) \\ Felix Fröhlich, Jan 09 2018
    
  • SageMath
    def A287326(n,k): return 6*k*(n-k) + 1
    flatten([[A287326(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 25 2024

Formula

T(n, k) = 6*k*(n-k) + 1.
G.f. of column k: n^k*(1+(6*k-1)*n)/(1-n)^2.
G.f.: (1 - x - x*y + 7*x^2*y)/((1 - x)^2*(1 - x*y)^2). - Stefano Spezia, Oct 09 2018 [Adapted by Stefano Spezia, Sep 25 2024]
From Kolosov Petro, Jun 05 2019: (Start)
T(n, k) = 1/2 * T(A294317(n, k), k) + 1/2.
T(n+1, k) = 2*T(n, k) - T(n-1, k), for n >= k.
T(n, k) = 6*A077028(n, k) - 5.
T(2n, n) = A227776(n).
T(2n+1, n) = A003154(n+1).
T(2n+3, n) = A166873(n+1).
Sum_{k=0..n-1} T(n, k) = Sum_{k=1..n} T(n, k) = A000578(n).
Sum_{k=1..n-1} T(n, k) = A068601(n).
(n+1)^3 - n^3 = T(A000124(n), 1). (End)
Sum_{k=0..n} (-1)^k*T(n, k) = (-1/2)*(1 + (-1)^n)*A016969(floor(n/2) - 1). - G. C. Greubel, Sep 25 2024

A038597 Numbers whose square is a difference between 2 positive cubes in at least one way.

Original entry on oeis.org

13, 28, 49, 104, 147, 181, 189, 224, 351, 361, 388, 392, 507, 549, 588, 676, 756, 832, 1029, 1176, 1323, 1369, 1425, 1448, 1512, 1625, 1792, 1862, 1911, 1922, 2299, 2355, 2521, 2808, 2883, 2888, 3104, 3136, 3185, 3216, 3500, 3721, 3969, 4056, 4103, 4332
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    is(n)=my(N=n^2); for(k=sqrtnint(N,3)+1,(sqrtint(12*N-3)+3)\6, if(ispower(N-k^3,3), return(1))); 0 \\ Charles R Greathouse IV, Oct 28 2013
    
  • PARI
    mm=820188; cb=vector(mm); for(i=1, mm, cb[i]=i^3); mb=1420608; v=vector(mb); mx=mb^2; for(i=1, mm-1, for(j=i+1, mm, d=cb[j]-cb[i]; if(d<=mx, if(issquare(d, &r), v[r]=1), next(2)))); c=0; for(n=1, mb, if(v[n]==1, c++; write("b038597.txt", c " " n))) \\ Donovan Johnson, Oct 31 2013

Formula

a(n) = sqrt(A038596(n)). - M. F. Hasler, Oct 05 2013

Extensions

More terms from Jud McCranie

A014439 Differences between two positive cubes in exactly 1 way.

Original entry on oeis.org

7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 784, 817, 819, 866, 875, 919, 936, 973, 988, 992
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Crossrefs

Cf. A000578, A038593, A181123, A034179 (more than one way), A014440 (exactly two ways), A265625 (more than two ways), A014441 (exactly three ways), A333376, A333377.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    X:= floor(sqrt(N/3)):
    V:= Vector(N):
    for x from 2 to X do
      if x^3 > N then
         y0:= iroot(x^3-N, 3);
         if x^3 - y0^3 > N then y0:= y0+1 fi;
      else y0:= 1 fi;
      for y from y0 to x-1 do
         V[x^3 - y^3] := V[x^3 - y^3]+1
      od
    od: select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 11 2015
  • Mathematica
    r = 992; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] == 1 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Corrected and extended by Don Reble, Nov 19 2006

A038596 Squares that are a difference between 2 positive cubes.

Original entry on oeis.org

169, 784, 2401, 10816, 21609, 32761, 35721, 50176, 123201, 130321, 150544, 153664, 257049, 301401, 345744, 456976, 571536, 692224, 1058841, 1382976, 1750329, 1874161, 2030625, 2096704, 2286144, 2640625, 3211264, 3467044, 3651921, 3694084, 5285401, 5546025
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    is(n)=for(k=sqrtnint(n,3)+1,(sqrtint(12*n-3)+3)\6,if(ispower(n-k^3,3), return(issquare(n)))); 0 \\ Charles R Greathouse IV, Oct 28 2013
    
  • PARI
    mm=820188; cb=vector(mm); for(i=1, mm, cb[i]=i^3); mb=1420608; v=vector(mb); mx=mb^2; for(i=1, mm-1, for(j=i+1, mm, d=cb[j]-cb[i]; if(d<=mx, if(issquare(d, &r), v[r]=1), next(2)))); c=0; for(n=1, mb, if(v[n]==1, c++; write("b038596.txt", c " " n^2))) \\ Donovan Johnson, Oct 31 2013

Formula

a(n) = A038597(n)^2. - M. F. Hasler, Oct 05 2013

Extensions

More terms from Jud McCranie

A038598 First differences between numbers that are a difference between 2 positive cubes.

Original entry on oeis.org

7, 12, 7, 11, 19, 5, 2, 28, 7, 19, 7, 3, 25, 17, 20, 19, 7, 2, 1, 53, 8, 17, 20, 15, 4, 7, 44, 1, 10, 51, 21, 16, 3, 16, 7, 2, 34, 55, 2, 27, 26, 8, 37, 19, 7, 56, 33, 2, 47, 9, 44, 17, 37, 15, 4, 7, 17, 11, 88, 26, 37, 19, 9, 10, 45, 6, 37, 19, 7, 22, 33, 2, 26, 55, 44, 7, 19, 65, 44, 10, 7
Offset: 1

Views

Author

Keywords

Crossrefs

First differences of A181123.

Extensions

Extended by Ray Chandler, Nov 29 2008
Offset corrected and a(1)=7 inserted by Sean A. Irvine, Jan 23 2021

A228946 Numbers m such that m^3 - k^3 is a square for some k < m, k > 0.

Original entry on oeis.org

8, 10, 14, 28, 32, 33, 40, 56, 57, 65, 71, 72, 74, 78, 90, 105, 112, 114, 126, 128, 130, 132, 140, 148, 154, 155, 160, 176, 193, 200, 217, 218, 224, 228, 250, 252, 260, 266, 273, 280, 284, 288, 296, 297, 305, 312, 329, 336, 344, 349, 350, 360, 392
Offset: 1

Views

Author

M. F. Hasler, Oct 05 2013

Keywords

Comments

See A038596 = A038597^2 for the possible values of n^3-k^3.

Crossrefs

Programs

Formula

a(n) = A066648(n)^(1/3). - Amiram Eldar, Mar 20 2025
Previous Showing 31-40 of 43 results. Next