A081143
5th binomial transform of (0,0,0,1,0,0,0,0,......).
Original entry on oeis.org
0, 0, 0, 1, 20, 250, 2500, 21875, 175000, 1312500, 9375000, 64453125, 429687500, 2792968750, 17773437500, 111083984375, 683593750000, 4150390625000, 24902343750000, 147857666015625, 869750976562500, 5073547363281250
Offset: 0
-
[5^(n-3) * Binomial(n, 3): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
seq(binomial(n,3)*5^(n-3), n=0..25); # Zerinvary Lajos, Jun 03 2008
-
CoefficientList[Series[x^3/(1-5x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{20,-150,500,-625}, {0,0,0,1}, 30] (* Harvey P. Dale, Dec 24 2015 *)
-
vector(31, n, my(m=n-1); 5^(m-3)*binomial(m,3)) \\ G. C. Greubel, Mar 05 2020
-
[lucas_number2(n, 5, 0)*binomial(n,3)/5^3 for n in range(0, 22)] # Zerinvary Lajos, Mar 12 2009
A128962
a(n) = (n^3 - n)*4^n.
Original entry on oeis.org
0, 96, 1536, 15360, 122880, 860160, 5505024, 33030144, 188743680, 1038090240, 5536481280, 28789702656, 146565758976, 732828794880, 3607772528640, 17523466567680, 84112639524864, 399535037743104, 1880164883496960, 8774102789652480, 40637949762600960
Offset: 1
-
[(n^3-n)*4^n: n in [1..20]]; // Vincenzo Librandi, Feb 09 2013
-
CoefficientList[Series[96 x / (1-4 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 09 2013 *)
Table[(n^3-n)4^n,{n,20}] (* or *) LinearRecurrence[{16,-96,256,-256},{0,96,1536,15360},20] (* Harvey P. Dale, Dec 31 2018 *)
A006044
a(n) = 4^(n-4)*(n-1)*(n-2)*(n-3).
Original entry on oeis.org
6, 96, 960, 7680, 53760, 344064, 2064384, 11796480, 64880640, 346030080, 1799356416, 9160359936, 45801799680, 225485783040, 1095216660480, 5257039970304, 24970939858944, 117510305218560, 548381424353280, 2539871860162560, 11683410556747776, 53409876830846976
Offset: 4
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- Frank A. Haight, Letter to N. J. A. Sloane, n.d..
- Index entries for linear recurrences with constant coefficients, signature (16,-96,256,-256).
-
[4^(n-4)*(n-3)*(n-2)*(n-1): n in [4..30]]; // Vincenzo Librandi, Aug 14 2011
-
a[n_] := 4^(n - 4)*(n - 1)*(n - 2)*(n - 3); Array[a, 25, 4] (* Amiram Eldar, Jan 08 2023 *)
Erroneous reference deleted by Martin J. Erickson (erickson(AT)truman.edu), Nov 03 2010
A045543
6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
Original entry on oeis.org
1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
-
Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
-
[lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
A053109
Expansion of 1/(1-10*x)^10.
Original entry on oeis.org
1, 100, 5500, 220000, 7150000, 200200000, 5005000000, 114400000000, 2431000000000, 48620000000000, 923780000000000, 16796000000000000, 293930000000000000, 4974200000000000000, 81719000000000000000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (100, -4500, 120000, -2100000, 25200000, -210000000, 1200000000, -4500000000, 10000000000, -10000000000).
-
List([0..15],n->10^n*Binomial(n+9,9)); # Muniru A Asiru, Aug 16 2018
-
[10^n*Binomial(n+9, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
-
seq(coeff(series(1/(1-10*x)^10, x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Aug 16 2018
-
CoefficientList[Series[1/(1-10x)^10,{x,0,20}],x] (* or *) Table[10^n Binomial[n+9,9],{n,0,20}] (* Harvey P. Dale, May 19 2011 *)
-
vector(30,n,n--; 10^n*binomial(n+9, 9)) \\ G. C. Greubel, Aug 16 2018
-
[lucas_number2(n, 10, 0)*binomial(n,9)/10 ^9 for n in range(9, 24)] # Zerinvary Lajos, Mar 13 2009
A154372
Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
Offset: 0
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|1 1 ||0 1 ||0 1 | |1 1 |
|1 3 1 ||0 1 1 ||0 0 1 |... = |1 4 1 |
|1 6 5 1 ||0 1 3 1 ||0 0 1 1 | |1 12 9 1|
|... ||0 1 6 5 1 ||0 0 1 3 1| |... |
|... ||... ||... | | |
- _Peter Bala_, Jan 13 2015
-
/* As triangle */ [[(k+1)^(n-k)*Binomial(n,k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
-
T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)
A129004
a(n) = (n^3 + n^2)*4^n.
Original entry on oeis.org
8, 192, 2304, 20480, 153600, 1032192, 6422528, 37748736, 212336640, 1153433600, 6090129408, 31406948352, 158779572224, 789200240640, 3865470566400, 18691697672192, 89369679495168, 423037098786816, 1984618488135680, 9235897673318400, 42669847250731008, 195836215046438912
Offset: 1
-
[(n^3+n^2)*4^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
-
Table[(n^3+n^2)4^n,{n, 20}] (* or *) LinearRecurrence[{16,-96,256,-256}, {8,192,2304,20480},20] (* Harvey P. Dale, May 12 2011 *)
A172978
a(n) = binomial(n+10, 10)*4^n.
Original entry on oeis.org
1, 44, 1056, 18304, 256256, 3075072, 32800768, 318636032, 2867724288, 24216338432, 193730707456, 1479398129664, 10848919617536, 76776969601024, 526470648692736, 3509804324618240, 22813728110018560, 144934272698941440, 901813252348968960, 5505807224867389440
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..157
- Index entries for linear recurrences with constant coefficients, signature (44,-880,10560,-84480,473088,-1892352,5406720,-10813440,14417920,-11534336,4194304).
-
[Binomial(n+10, 10)*4^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
-
Table[Binomial[n + 10, 10]*4^n, {n, 0, 20}]
A293270
a(n) = n^n*binomial(2*n-1, n).
Original entry on oeis.org
1, 1, 12, 270, 8960, 393750, 21555072, 1413199788, 107961384960, 9418192087590, 923780000000000, 100633991211229476, 12055263261877075968, 1575041416811693275900, 222887966509090352332800, 33962507149515380859375000, 5543988061027763016035205120
Offset: 0
-
Join[{1}, Table[n^n Binomial[2 n - 1, n], {n, 1, 16}]]
Join[{1}, Table[(-1)^n n^n Binomial[-n, n], {n, 1, 16}]]
Table[SeriesCoefficient[1/(1 - n x)^n, {x, 0, n}], {n, 0, 16}]
-
a(n) = n^n*binomial(2*n-1, n); \\ Altug Alkan, Oct 04 2017
A305833
Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0
Triangle begins:
1;
4;
16, 1;
64, 8;
256, 48, 1;
1024, 256, 12;
4096, 1280, 96, 1;
16384, 6144, 640, 16;
65536, 28672, 3840, 160, 1;
262144, 131072, 21504, 1280, 20;
1048576, 589824, 114688, 8960, 240, 1;
4194304, 2621440, 589824, 57344, 2240, 24;
16777216, 11534336, 2949120, 344064, 17920, 336, 1;
67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
Comments