A144773
10-fold factorials: Product_{k=0..n-1} (10*k+1).
Original entry on oeis.org
1, 1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 0
Essentially a duplicate of
A045757.
-
R:=PowerSeriesRing(Rationals(), 15); Coefficients(R!(Laplace( (1-10*x)^(-1/10) ))); // G. C. Greubel, Mar 03 2020
-
G(x):=(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
-
b = 10; Table[FullSimplify[b^n*Gamma[n + 1/b]/Gamma[1/b]], {n, 0, 14}] (* Michael De Vlieger, Sep 14 2016 *)
Join[{1},FoldList[Times,10 Range[0,15]+1]] (* Harvey P. Dale, Oct 24 2022 *)
-
Vec(serlaplace( (1-10*x)^(-1/10) +O('x^15) )) \\ G. C. Greubel, Mar 03 2020
-
[10^n*rising_factorial(1/10,n) for n in (0..15)] # G. C. Greubel, Mar 03 2020
A053115
a(n) = ((8*n+10)(!^8))/20, related to A034908 ((8*n+2)(!^8) octo- or 8-factorials).
Original entry on oeis.org
1, 18, 468, 15912, 668304, 33415200, 1938081600, 127913385600, 9465590534400, 776178423820800, 69856058143872000, 6845893698099456000, 725664731998542336000, 82725779447833826304000
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 17, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nmax = 50}, CoefficientList[Series[1/(1 - 8*x)^(9/4), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
-
x='x+O('x^25); Vec(serlaplace(1/(1-8*x)^(9/4))) \\ G. C. Greubel, Aug 26 2018
A088996
Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 2, 7, 6;
0, 6, 29, 46, 24;
0, 24, 146, 329, 326, 120;
0, 120, 874, 2521, 3604, 2556, 720;
0, 720, 6084, 21244, 39271, 40564, 22212, 5040;
0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
...
-
A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
[A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
-
A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
seq(seq(A059364(n, k), k = 0..n), n = 0..8); # Peter Luschny, Aug 27 2025
-
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
-
def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
for n in (0..10): [A088996(n,k) for k in (0..n)] # Peter Luschny, May 12 2013
A147626
Octo-factorial numbers (5).
Original entry on oeis.org
1, 6, 84, 1848, 55440, 2106720, 96909120, 5233092480, 324451733760, 22711621363200, 1771506466329600, 152349556104345600, 14320858273808486400, 1460727543928465612800, 160680029832131217408000, 18960243520191483654144000, 2388990683544126940422144000
Offset: 1
-
[n le 1 select 1 else (8*n-10)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,8}];lst
Table[8^(n-1)*Pochhammer[3/4, n-1], {n,40}] (* G. C. Greubel, Oct 21 2022 *)
-
[8^(n-1)*rising_factorial(3/4, n-1) for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A153274
Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).
Original entry on oeis.org
2, 6, 15, 24, 105, 280, 120, 945, 3640, 9945, 720, 10395, 58240, 208845, 576576, 5040, 135135, 1106560, 5221125, 17873856, 49579075, 40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000, 362880, 34459425, 608608000, 4996616625, 26381811456, 104463111025, 337767408000, 939536222625
Offset: 1
Triangle begins as:
2;
6, 15;
24, 105, 280;
120, 945, 3640, 9945;
720, 10395, 58240, 208845, 576576;
5040, 135135, 1106560, 5221125, 17873856, 49579075;
40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
-
Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
-
[(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
-
seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
-
Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
-
T(n, k) = prod(j=0, n, j*k+1);
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
[[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
A113149
Row 8 of table A113143; equal to INVERT of 8-fold factorials shifted one place right.
Original entry on oeis.org
1, 1, 2, 12, 176, 4184, 134824, 5451528, 264710536, 14992543432, 969925065992, 70547721068232, 5697913588192520, 505926926171909576, 48979597517592503560, 5134435963996172979912, 579379155027833982679816
Offset: 0
A(x) = 1 + x + 2*x^2 + 12*x^3 + 176*x^4 + 4184*x^5 +...
= 1/(1 - x - x^2 - 9*x^3 - 153*x^4 -...- A045755(n)*x^(n+1)
-...).
-
{a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0,n,x^j*prod(i=0,j,8*i+1)));return(polcoeff(A,n,X))}
A153189
Triangle T(n,k) = Product_{j=0..k} n*j+1.
Original entry on oeis.org
1, 1, 2, 1, 3, 15, 1, 4, 28, 280, 1, 5, 45, 585, 9945, 1, 6, 66, 1056, 22176, 576576, 1, 7, 91, 1729, 43225, 1339975, 49579075, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625
Offset: 0
Triangle begins as:
1;
1, 2;
1, 3, 15;
1, 4, 28, 280;
1, 5, 45, 585, 9945;
1, 6, 66, 1056, 22176, 576576;
1, 7, 91, 1729, 43225, 1339975, 49579075;
1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000;
1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625;
Cf.
A000142 (row 2),
A001147 (3),
A007559 (4),
A007696 (5),
A008548 (6),
A008542 (7),
A045754 (8),
A045755 (9),
A045756 (10),
A144773 (11),
A256268 (combined table).
-
[(&*[n*j+1: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 15 2020
-
seq(seq(mul(n*j+1, j=0..k), k=0..n), n=0..10); # G. C. Greubel, Feb 15 2020
-
T[n_, k_]= If[n==0 && k==0, 1, Product[n*j+1, {j,0,k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2020 *)
T[n_, k_]:= T[n, k]= If[k<2, 1+k*n, ((1+n*k)*T[n, k-1] + (1+n*k)*(1+n*(k-1))* T[n, k-2])/2]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Georg Fischer, Feb 17 2020 *)
-
T(n,k)=prod(j=0,k,n*j+1) \\ M. F. Hasler, Oct 28 2014
-
[[ product(n*j+1 for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 15 2020
A020028
Nearest integer to Gamma(n + 1/8)/Gamma(1/8).
Original entry on oeis.org
1, 0, 0, 0, 1, 4, 20, 121, 862, 7000, 63876, 646743, 7195013, 87239530, 1145018832, 16173391002, 244622538903, 3944538439806, 67550220781672, 1224347751667801, 23415650750646696, 471239971356764754
Offset: 0
-
Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
-
Table[Round[Gamma[n+1/8]/Gamma[1/8]],{n,0,30}] (* Harvey P. Dale, Sep 05 2020 *)
A368119
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559
[4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696
[5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548
[6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542
[7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754
[8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755
-
def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
for n in range(9): print([A(n, k) for k in range(8)])
Comments