cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 65 results. Next

A163283 Triangle read by rows in which row n lists n+1 terms, starting with n^3 and ending with n^4, such that the difference between successive terms is equal to n^3 - n^2.

Original entry on oeis.org

0, 1, 1, 8, 12, 16, 27, 45, 63, 81, 64, 112, 160, 208, 256, 125, 225, 325, 425, 525, 625, 216, 396, 576, 756, 936, 1116, 1296, 343, 637, 931, 1225, 1519, 1813, 2107, 2401, 512, 960, 1408, 1856, 2304, 2752, 3200, 3648, 4096, 729, 1377, 2025, 2673, 3321, 3969
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

The first term of row n is A000578(n) and the last term of row n is A000583(n).

Examples

			Triangle begins:
0;
1,    1;
8,    12,   16;
27,   45,   63,   81;
64,   112,  160,  208,  256;
125,  225,  325,  425,  525,  625;
216,  396,  576,  756,  936,  1116, 1296;
343,  637,  931,  1225, 1519, 1813, 2107, 2401;
512,  960,  1408, 1856, 2304, 2752, 3200, 3648, 4096;
729,  1377, 2025, 2673, 3321, 3969, 4617, 5265, 5913, 6561;
1000, 1900, 2800, 3700, 4600, 5500, 6400, 7300, 8200, 9100, 10000;
...
		

Crossrefs

Programs

  • Mathematica
    Table[n^3 + k*(n^3 - n^2), {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 13 2016 *)
  • PARI
    A163283(n, k)=n^3 +k*(n^3 -n^2) \\ G. C. Greubel, Dec 13 2016

Formula

T(n, k) = n^3 + k*(n^3 - n^2), for 0 <= k <= n, n >= 0. - G. C. Greubel, Dec 13 2016

Extensions

Edited by Omar E. Pol, Jul 25 2009

A059409 a(n) = 4^n * (2^n - 1).

Original entry on oeis.org

0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928, 1152920405095219200
Offset: 0

Views

Author

Keywords

Comments

Jordan's totient functions are described more fully in A059379 and A059380; for example, J_1(n) is Euler's totient function and J_2(n) the Moebius transform of squares.

Examples

			(4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Programs

Formula

Equals J_n(8) (see A059379).
J_n(8) = 8^n - A024023(n) - A000225(n) - A000012(n).
a(n) = 4*A016152(n).
G.f.: 4*x / ( (8*x-1)*(4*x-1) ). - R. J. Mathar, Nov 23 2018
Sum_{n>0} 1/a(n) = E - 4/3, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
a(n) = A291779(A008585(n)) = A045991(A000079(n)). - Mathew Englander, Feb 08 2024

A240930 a(n) = n^7 - n^6.

Original entry on oeis.org

0, 0, 64, 1458, 12288, 62500, 233280, 705894, 1835008, 4251528, 9000000, 17715610, 32845824, 57921708, 97883968, 159468750, 251658240, 386201104, 578207808, 846825858, 1216000000, 1715322420, 2380977984, 3256789558, 4395368448, 5859375000, 7722894400, 10072932714
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 7-digit positive integers in base n.

Crossrefs

Programs

  • Magma
    [n^7-n^6 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
  • Maple
    A240930:=n->n^7-n^6: seq(A240930(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Table[n^7 - n^6, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
    CoefficientList[Series[2 (32*x^2 + 473*x^3 + 1208*x^4 + 718*x^5 + 88*x^6 + x^7)/(x - 1)^8, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
  • PARI
    vector(100, n, (n-1)^7 - (n-1)^6) \\ Derek Orr, Aug 03 2014
    

Formula

a(n) = n^6*(n-1) = n^7 - n^6.
a(n) = A001015(n) - A001014(n).
G.f.: 2*(32*x^2 + 473*x^3 + 1208*x^4 + 718*x^5 + 88*x^6 + x^7)/(x - 1)^8. - Wesley Ivan Hurt, Aug 03 2014
Recurrence: a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Aug 03 2014
Sum_{n>=2} 1/a(n) = 6 - Sum_{k=2..6} zeta(k). - Amiram Eldar, Jul 05 2020

A240931 a(n) = n^8 - n^7.

Original entry on oeis.org

0, 0, 128, 4374, 49152, 312500, 1399680, 4941258, 14680064, 38263752, 90000000, 194871710, 394149888, 752982204, 1370375552, 2392031250, 4026531840, 6565418768, 10407740544, 16089691302, 24320000000, 36021770820, 52381515648, 74906159834, 105488842752, 146484375000
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 8-digit positive integers in base n.

Crossrefs

Programs

  • Magma
    [n^8-n^7 : n in [0..30]]; // Wesley Ivan Hurt, Aug 09 2014
  • Maple
    A240931:=n->n^8-n^7: seq(A240931(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
  • Mathematica
    Table[n^8 - n^7, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 09 2014 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,128,4374,49152,312500,1399680,4941258,14680064},30] (* Harvey P. Dale, Apr 29 2016 *)
  • PARI
    vector(100, n, (n-1)^8 - (n-1)^7) \\ Derek Orr, Aug 03 2014
    
  • PARI
    concat([0,0], Vec(-2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9 + O(x^100))) \\ Colin Barker, Aug 08 2014
    

Formula

a(n) = n^7*(n-1) = n^8 - n^7.
a(n) = A001016(n) - A001015(n).
G.f.: -2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9. - Colin Barker, Aug 08 2014
Sum_{n>=2} 1/a(n) = 7 - Sum_{k=2..7} zeta(k). - Amiram Eldar, Jul 05 2020

A240932 a(n) = n^9 - n^8.

Original entry on oeis.org

0, 0, 256, 13122, 196608, 1562500, 8398080, 34588806, 117440512, 344373768, 900000000, 2143588810, 4729798656, 9788768652, 19185257728, 35880468750, 64424509440, 111612119056, 187339329792, 305704134738, 486400000000, 756457187220, 1152393344256, 1722841676182
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 9-digit positive integers in base n.

Crossrefs

Programs

Formula

a(n) = n^8*(n-1) = n^9 - n^8.
a(n) = A001017(n) - A001016(n).
G.f.: 2*x^2*(x^7+374*x^6+9327*x^5+49780*x^4+78095*x^3+38454*x^2+5281*x+128) / (x-1)^10. - Colin Barker, Aug 08 2014
Sum_{n>=2} 1/a(n) = 8 - Sum_{k=2..8} zeta(k). - Amiram Eldar, Jul 05 2020

A240933 a(n) = n^10 - n^9.

Original entry on oeis.org

0, 0, 512, 39366, 786432, 7812500, 50388480, 242121642, 939524096, 3099363912, 9000000000, 23579476910, 56757583872, 127253992476, 268593608192, 538207031250, 1030792151040, 1897406023952, 3372107936256, 5808378560022, 9728000000000, 15885600931620, 25352653573632
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 10-digit positive integers in base n.

Crossrefs

Programs

  • Magma
    [n^10-n^9 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
  • Maple
    A240933:=n->n^10-n^9: seq(A240933(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Table[n^10 - n^9, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
    CoefficientList[Series[2 (256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,0,512,39366,786432,7812500,50388480,242121642,939524096,3099363912,9000000000},40] (* Harvey P. Dale, Oct 19 2022 *)
  • PARI
    vector(100, n, (n-1)^10 - (n-1)^9) \\ Derek Orr, Aug 03 2014
    

Formula

a(n) = n^9*(n-1) = n^10 - n^9.
a(n) = A008454(n) - A001017(n). - Michel Marcus, Aug 03 2014
G.f.: 2*(256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11. - Wesley Ivan Hurt, Aug 03 2014
Recurrence: a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Wesley Ivan Hurt, Aug 03 2014
Sum_{n>=2} 1/a(n) = 9 - Sum_{k=2..9} zeta(k). - Amiram Eldar, Jul 05 2020

A067389 a(n) = 3*n^3 + 2*n^2 + n.

Original entry on oeis.org

0, 6, 34, 102, 228, 430, 726, 1134, 1672, 2358, 3210, 4246, 5484, 6942, 8638, 10590, 12816, 15334, 18162, 21318, 24820, 28686, 32934, 37582, 42648, 48150, 54106, 60534, 67452, 74878, 82830, 91326, 100384, 110022, 120258, 131110, 142596
Offset: 0

Views

Author

George E. Antoniou, Jan 21 2002

Keywords

Programs

Formula

a(n) = n*A056109(n) = A045991(n+1)+A033431(n). - Henry Bottomley, Jan 25 2002
From Chai Wah Wu, Apr 25 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: 2*x*(x^2 + 5*x + 3)/(x - 1)^4. (End)

Extensions

More terms from Henry Bottomley, Jan 25 2002

A114364 a(n) = n*(n+1)^2.

Original entry on oeis.org

4, 18, 48, 100, 180, 294, 448, 648, 900, 1210, 1584, 2028, 2548, 3150, 3840, 4624, 5508, 6498, 7600, 8820, 10164, 11638, 13248, 15000, 16900, 18954, 21168, 23548, 26100, 28830, 31744, 34848, 38148, 41650, 45360, 49284, 53428, 57798, 62400
Offset: 1

Views

Author

Cino Hilliard, Feb 09 2006

Keywords

Comments

Former name was "Numbers k such that k*x^3 + x + 1 is not prime."
Theorem: y = k*x^3 + x + 1 is not prime for k = 4, 18, 48, ..., n*(n+1)^2. Proof: n*(n+1)^2*x^3 + x + 1 = ((n+1)*x + 1)*((n^2+n)*x^2 - n*x + 1). Thus (n+1)*x + 1 divides y. This could possibly be used as a pre-test for compositeness. This sequence is the same as beginning with the third term of A045991.

Crossrefs

Cf. A045991.
Equals twice A006002.

Programs

  • Maple
    seq(2*binomial(n,2)*n, n=2..40); # Zerinvary Lajos, Apr 25 2007
  • Mathematica
    CoefficientList[Series[(2 (2 + x))/(-1 + x)^4, {x, 0, 38}], x] (* or *)
    Array[# (# + 1)^2 &, 39] (* Michael De Vlieger, Feb 03 2019 *)
  • PARI
    g2(n) = for(x=1,n,y=x*(x+1)^2;print1(y","))

Formula

a(n) = n*(n+1)^2.
G.f.: 2 * (2 + x)/(-1 + x)^4. - Michael De Vlieger, Feb 03 2019
From Amiram Eldar, Jan 02 2021: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi^2/6.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 +2*log(2) - 2. (End)
E.g.f.: exp(x)*x*(4 + 5*x + x^2). - Stefano Spezia, May 20 2021

Extensions

Name changed by Jon E. Schoenfield, Feb 03 2019

A212969 Number of (w,x,y) with all terms in {0,...,n} and w != x and x > range(w,x,y).

Original entry on oeis.org

0, 0, 2, 10, 26, 56, 100, 166, 252, 368, 510, 690, 902, 1160, 1456, 1806, 2200, 2656, 3162, 3738, 4370, 5080, 5852, 6710, 7636, 8656, 9750, 10946, 12222, 13608, 15080, 16670, 18352, 20160, 22066, 24106, 26250, 28536, 30932, 33478, 36140
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w != x > (Max[w, x, y] - Min[w, x, y]),
      s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212969 *)
    m/2 (* integers *)

Formula

a(n) = (n-1)*(2*n*(7*n-2) - 3*(-1)^n + 3)/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 2*(x^2)*(1 + 3*x + 2*x^2 + x^3) and g(x) = ((1-x)^4)*(1+x)^2.
a(n) = A045991(n) - A212970(n-1). - Ayoub Saber Rguez, Mar 31 2023

A212970 Number of (w,x,y) with all terms in {0,...,n} and w != x and x < range(w,x,y).

Original entry on oeis.org

0, 2, 8, 22, 44, 80, 128, 196, 280, 390, 520, 682, 868, 1092, 1344, 1640, 1968, 2346, 2760, 3230, 3740, 4312, 4928, 5612, 6344, 7150, 8008, 8946, 9940, 11020, 12160, 13392, 14688, 16082, 17544, 19110, 20748, 22496, 24320, 26260, 28280
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.
Twice the partial sums of A210977. - J. M. Bergot, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w != x < (Max[w, x, y] - Min[w, x, y]),
       s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212970 *)
    m/2 (* essentially A088003 *)

Formula

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 2*x*(1 + 2*x + 2*x^2) and g(x) = ((1-x)^4)(1+x)^2.
a(n) = 2 * A088003(n) for n>0.
From Ayoub Saber Rguez, Mar 31 2023: (Start)
a(n) + A212969(n+1) = A045991(n+1).
a(n) = (10*n^3 + 24*n^2 + 8*n + (6*n)*(n mod 2))/24. (End)

Extensions

Typo in name corrected by Ayoub Saber Rguez, Mar 31 2023
Previous Showing 21-30 of 65 results. Next