A163283
Triangle read by rows in which row n lists n+1 terms, starting with n^3 and ending with n^4, such that the difference between successive terms is equal to n^3 - n^2.
Original entry on oeis.org
0, 1, 1, 8, 12, 16, 27, 45, 63, 81, 64, 112, 160, 208, 256, 125, 225, 325, 425, 525, 625, 216, 396, 576, 756, 936, 1116, 1296, 343, 637, 931, 1225, 1519, 1813, 2107, 2401, 512, 960, 1408, 1856, 2304, 2752, 3200, 3648, 4096, 729, 1377, 2025, 2673, 3321, 3969
Offset: 0
Triangle begins:
0;
1, 1;
8, 12, 16;
27, 45, 63, 81;
64, 112, 160, 208, 256;
125, 225, 325, 425, 525, 625;
216, 396, 576, 756, 936, 1116, 1296;
343, 637, 931, 1225, 1519, 1813, 2107, 2401;
512, 960, 1408, 1856, 2304, 2752, 3200, 3648, 4096;
729, 1377, 2025, 2673, 3321, 3969, 4617, 5265, 5913, 6561;
1000, 1900, 2800, 3700, 4600, 5500, 6400, 7300, 8200, 9100, 10000;
...
A059409
a(n) = 4^n * (2^n - 1).
Original entry on oeis.org
0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928, 1152920405095219200
Offset: 0
(4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
-
List([0..100], n->4^n * (2^n - 1)); # Muniru A Asiru, Jan 29 2018
-
[4^n*(2^n - 1): n in [0..40]]; // Vincenzo Librandi, Apr 26 2011
-
seq(4^n * (2^n - 1), n=0..20); # Muniru A Asiru, Jan 29 2018
-
Table[4^n*(2^n - 1), {n,0,30}] (* G. C. Greubel, Jan 29 2018 *)
LinearRecurrence[{12,-32},{0,4},20] (* Harvey P. Dale, Oct 14 2019 *)
-
a(n) = { 4^n*(2^n - 1) } \\ Harry J. Smith, Jun 26 2009
A240930
a(n) = n^7 - n^6.
Original entry on oeis.org
0, 0, 64, 1458, 12288, 62500, 233280, 705894, 1835008, 4251528, 9000000, 17715610, 32845824, 57921708, 97883968, 159468750, 251658240, 386201104, 578207808, 846825858, 1216000000, 1715322420, 2380977984, 3256789558, 4395368448, 5859375000, 7722894400, 10072932714
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[n^7-n^6 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
-
A240930:=n->n^7-n^6: seq(A240930(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
-
Table[n^7 - n^6, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
CoefficientList[Series[2 (32*x^2 + 473*x^3 + 1208*x^4 + 718*x^5 + 88*x^6 + x^7)/(x - 1)^8, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
-
vector(100, n, (n-1)^7 - (n-1)^6) \\ Derek Orr, Aug 03 2014
A240931
a(n) = n^8 - n^7.
Original entry on oeis.org
0, 0, 128, 4374, 49152, 312500, 1399680, 4941258, 14680064, 38263752, 90000000, 194871710, 394149888, 752982204, 1370375552, 2392031250, 4026531840, 6565418768, 10407740544, 16089691302, 24320000000, 36021770820, 52381515648, 74906159834, 105488842752, 146484375000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[n^8-n^7 : n in [0..30]]; // Wesley Ivan Hurt, Aug 09 2014
-
A240931:=n->n^8-n^7: seq(A240931(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
-
Table[n^8 - n^7, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 09 2014 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,128,4374,49152,312500,1399680,4941258,14680064},30] (* Harvey P. Dale, Apr 29 2016 *)
-
vector(100, n, (n-1)^8 - (n-1)^7) \\ Derek Orr, Aug 03 2014
-
concat([0,0], Vec(-2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9 + O(x^100))) \\ Colin Barker, Aug 08 2014
A240932
a(n) = n^9 - n^8.
Original entry on oeis.org
0, 0, 256, 13122, 196608, 1562500, 8398080, 34588806, 117440512, 344373768, 900000000, 2143588810, 4729798656, 9788768652, 19185257728, 35880468750, 64424509440, 111612119056, 187339329792, 305704134738, 486400000000, 756457187220, 1152393344256, 1722841676182
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
A240933
a(n) = n^10 - n^9.
Original entry on oeis.org
0, 0, 512, 39366, 786432, 7812500, 50388480, 242121642, 939524096, 3099363912, 9000000000, 23579476910, 56757583872, 127253992476, 268593608192, 538207031250, 1030792151040, 1897406023952, 3372107936256, 5808378560022, 9728000000000, 15885600931620, 25352653573632
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
[n^10-n^9 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
-
A240933:=n->n^10-n^9: seq(A240933(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
-
Table[n^10 - n^9, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
CoefficientList[Series[2 (256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,0,512,39366,786432,7812500,50388480,242121642,939524096,3099363912,9000000000},40] (* Harvey P. Dale, Oct 19 2022 *)
-
vector(100, n, (n-1)^10 - (n-1)^9) \\ Derek Orr, Aug 03 2014
A067389
a(n) = 3*n^3 + 2*n^2 + n.
Original entry on oeis.org
0, 6, 34, 102, 228, 430, 726, 1134, 1672, 2358, 3210, 4246, 5484, 6942, 8638, 10590, 12816, 15334, 18162, 21318, 24820, 28686, 32934, 37582, 42648, 48150, 54106, 60534, 67452, 74878, 82830, 91326, 100384, 110022, 120258, 131110, 142596
Offset: 0
-
[3*n^3 + 2*n^2 + n: n in [0..60]]; // Vincenzo Librandi, May 08 2011
-
a:=n->n+2*n^2+3*n^3: seq(a(n), n=0..36); # Zerinvary Lajos, Oct 05 2007
-
Table[3*n^3+2*n^2+n,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, May 07 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,6,34,102},40] (* Harvey P. Dale, Oct 01 2019 *)
A114364
a(n) = n*(n+1)^2.
Original entry on oeis.org
4, 18, 48, 100, 180, 294, 448, 648, 900, 1210, 1584, 2028, 2548, 3150, 3840, 4624, 5508, 6498, 7600, 8820, 10164, 11638, 13248, 15000, 16900, 18954, 21168, 23548, 26100, 28830, 31744, 34848, 38148, 41650, 45360, 49284, 53428, 57798, 62400
Offset: 1
-
seq(2*binomial(n,2)*n, n=2..40); # Zerinvary Lajos, Apr 25 2007
-
CoefficientList[Series[(2 (2 + x))/(-1 + x)^4, {x, 0, 38}], x] (* or *)
Array[# (# + 1)^2 &, 39] (* Michael De Vlieger, Feb 03 2019 *)
-
g2(n) = for(x=1,n,y=x*(x+1)^2;print1(y","))
A212969
Number of (w,x,y) with all terms in {0,...,n} and w != x and x > range(w,x,y).
Original entry on oeis.org
0, 0, 2, 10, 26, 56, 100, 166, 252, 368, 510, 690, 902, 1160, 1456, 1806, 2200, 2656, 3162, 3738, 4370, 5080, 5852, 6710, 7636, 8656, 9750, 10946, 12222, 13608, 15080, 16670, 18352, 20160, 22066, 24106, 26250, 28536, 30932, 33478, 36140
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w != x > (Max[w, x, y] - Min[w, x, y]),
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212969 *)
m/2 (* integers *)
A212970
Number of (w,x,y) with all terms in {0,...,n} and w != x and x < range(w,x,y).
Original entry on oeis.org
0, 2, 8, 22, 44, 80, 128, 196, 280, 390, 520, 682, 868, 1092, 1344, 1640, 1968, 2346, 2760, 3230, 3740, 4312, 4928, 5612, 6344, 7150, 8008, 8946, 9940, 11020, 12160, 13392, 14688, 16082, 17544, 19110, 20748, 22496, 24320, 26260, 28280
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w != x < (Max[w, x, y] - Min[w, x, y]),
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212970 *)
m/2 (* essentially A088003 *)
Comments