1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 1, 0, 0, 1, 10, 5, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0
Offset: 0
Triangle begins :
1
1, 0
1, 1, 0
1, 3, 0, 0
1, 6, 1, 0, 0
1, 10, 5, 0, 0, 0
1, 15, 15, 1, 0, 0, 0
1, 21, 35, 7, 0, 0, 0, 0
1, 28, 70, 28, 1, 0, 0, 0, 0
A127617
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 3 with the steps (1,0), (0, 1), (2,0) and (0,2).
Original entry on oeis.org
1, 1, 5, 22, 92, 395, 1684, 7189, 30685, 130973, 559038, 2386160, 10184931, 43472696, 185556025, 792015257, 3380586357, 14429474710, 61589830404, 262886022219, 1122085581740, 4789437042413, 20442921249973, 87257234103245, 372443097062686, 1589711867161816
Offset: 0
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
-
I:=[1,1,5,22]; [n le 4 select I[n] else 3*Self(n-1)+5*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 13 2018
-
seq(coeff(series((1-2*x-3*x^2)/(1-3*x-5*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Dec 10 2018
-
LinearRecurrence[{3, 5, 2, -1}, {1, 1, 5, 22}, 23] (* Jean-François Alcover, Dec 10 2018 *)
CoefficientList[Series[(1 - 2 x - 3 x^2) / (1 - 3 x - 5 x^2 - 2 x^3 + x^4), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 13 2018 *)
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 3];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 03 2019 *)
A205575
Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,0.
Original entry on oeis.org
1, 1, 0, 2, 2, 1, 3, 5, 4, 1, 5, 12, 14, 8, 2, 8, 25, 38, 32, 15, 3, 13, 50, 94, 104, 71, 28, 5, 21, 96, 215, 293, 260, 149, 51, 8, 34, 180, 468, 756, 822, 612, 304, 92, 13, 55, 331, 980, 1828, 2346, 2136, 1376, 604, 164, 21
Offset: 0
Triangle begins :
1
1, 0
2, 2, 1
3, 5, 4, 1
5, 12, 14, 8, 2
8, 25, 38, 32, 15, 3
13, 50, 94, 104, 71, 28, 5
-
T(n,k) = {if(n<0, return(0)); if (n==0, if (k<0, return(0)); if (k==0, return(1))); if (n==1, if (k<0, return(0)); if (k==0, return(1)); if (k==1, return(0))); T(n-1,k)+T(n-1,k-1)+T(n-2,k)+T(n-2,k-1)+T(n-2,k-2);} \\ Michel Marcus, Oct 27 2021
A084097
Square array whose rows have e.g.f. exp(x)*cosh(sqrt(k)*x), k>=0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 8, 1, 1, 1, 5, 10, 17, 16, 1, 1, 1, 6, 13, 28, 41, 32, 1, 1, 1, 7, 16, 41, 76, 99, 64, 1, 1, 1, 8, 19, 56, 121, 208, 239, 128, 1, 1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1, 1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1
Offset: 0
Array, A(n,k), begins:
.n\k.........0..1...2...3....4.....5......6......7.......8........9.......10
.0: A000012..1..1...1...1....1.....1......1......1.......1........1........1
.1: A000079..1..1...2...4....8....16.....32.....64.....128......256......512
.2: A001333..1..1...3...7...17....41.....99....239.....577.....1393.....3363
.3: A026150..1..1...4..10...28....76....208....568....1552.....4240....11584
.4: A046717..1..1...5..13...41...121....365...1093....3281.....9841....29525
.5: A084057..1..1...6..16...56...176....576...1856....6016....19456....62976
.6: A002533..1..1...7..19...73...241....847...2899...10033....34561...119287
.7: A083098..1..1...8..22...92...316...1184...4264...15632....56848...207488
.8: A084058..1..1...9..25..113...401...1593...5993...23137....88225...338409
.9: A003665..1..1..10..28..136...496...2080...8128...32896...130816...524800
10: A002535..1..1..11..31..161...601...2651..10711...45281...186961...781451
11: A133294..1..1..12..34..188...716...3312..13784...60688...259216..1125312
12: A090042..1..1..13..37..217...841...4069..17389...79537...350353..1575613
13: A125816..1..1..14..40..248...976...4928..21568..102272...463360..2153984
14: A133343..1..1..15..43..281..1121...5895..26363..129361...601441..2884575
15: A133345..1..1..16..46..316..1276...6976..31816..161296...768016..3794176
16: A120612..1..1..17..49..353..1441...8177..37969..198593...966721..4912337
17: A133356..1..1..18..52..392..1616...9504..44864..241792..1201408..6271488
18: A125818..1..1..19..55..433..1801..10963..52543..291457..1476145..7907059
25: A083578
- _Robert G. Wilson v_, Jan 02 2013
Antidiagonal triangle, T(n,k), begins:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 4, 1;
1, 1, 4, 7, 8, 1;
1, 1, 5, 10, 17, 16, 1;
1, 1, 6, 13, 28, 41, 32, 1;
1, 1, 7, 16, 41, 76, 99, 64, 1;
1, 1, 8, 19, 56, 121, 208, 239, 128, 1;
1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1;
1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1;
Rows:
A000012,
A000079,
A001333,
A026150,
A046717,
A084057,
A002533,
A083098,
A084058,
A003665,
-
function A084097(n,k)
if k eq 0 then return 1;
else return k*2^(k-1)*(&+[ Binomial(k-j,j)*((n-k-1)/4)^j/(k-j): j in [0..Floor(k/2)]]);
end if; return A084097; end function;
[A084097(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 15 2022
-
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; T[1, 0] = 1; Table[ T[j - k, k], {j, 0, 11}, {k, 0, j}] // Flatten (* Robert G. Wilson v, Jan 02 2013 *)
-
def A084097(n,k):
if (k==0): return 1
else: return k*2^(k-1)*sum( binomial(k-j,j)*((n-k-1)/4)^j/(k-j) for j in range( (k+2)//2 ) )
flatten([[A084097(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 15 2022
A084182
a(n) = 3^n + (-1)^n - [1/(n+1)], where [] represents the floor function.
Original entry on oeis.org
1, 2, 10, 26, 82, 242, 730, 2186, 6562, 19682, 59050, 177146, 531442, 1594322, 4782970, 14348906, 43046722, 129140162, 387420490, 1162261466, 3486784402, 10460353202, 31381059610, 94143178826, 282429536482, 847288609442, 2541865828330, 7625597484986
Offset: 0
Except for leading term, same as
A102345.
A092438
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
0, 2, 6, 26, 90, 302, 966, 3026, 9330, 28502, 86526, 261626, 788970, 2375102, 7141686, 21457826, 64439010, 193448102, 580606446, 1742343626, 5228079450, 15686335502, 47063200806, 141197991026, 423610750290, 1270865805302
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
a(3) = (3^4+(-1)^4)/2-2^4+1 = 26.
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
A092439
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
0, 0, 6, 30, 140, 560, 2058, 7098, 23472, 75372, 237182, 735878, 2260596, 6896136, 20933778, 63325170, 191089112, 575626052, 1731858246, 5206059774, 15640198620, 46966732320, 140996664986, 423191320490, 1269993390720
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
a(3) = (3^5+(-1)^5)/2 - 2^5 - 5*(2^4-1) + 4^2 = 30.
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- James Propp, Publications and Preprints
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Index entries for linear recurrences with constant coefficients, signature (9,-30,42,-9,-39,40,-12).
-
Table[(3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{9,-30,42,-9,-39,40,-12},{0,0,6,30,140,560,2058},30] (* Harvey P. Dale, Nov 27 2011 *)
A127618
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 4 with the steps (1,0), (0, 1), (2,0) and (0,2).
Original entry on oeis.org
1, 1, 5, 22, 117, 590, 3018, 15378, 78440, 399992, 2039852, 10402480, 53049048, 270531368, 1379614800, 7035549312, 35878823312, 182969359520, 933079279328, 4758375627808, 24266039468160, 123748253080832, 631072497876672
Offset: 0
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
-
Join[{1, 1}, LinearRecurrence[{4, 6, -2}, {5, 22, 117}, 21]] (* Jean-François Alcover, Dec 10 2018 *)
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 4];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 03 2019 *)
A127619
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 5 with the steps (1,0), (0, 1), (2,0) and (0,2).
Original entry on oeis.org
1, 1, 5, 22, 117, 654, 3674, 20763, 117349, 663529, 3751874, 21215245, 119963514, 678345474, 3835772387, 21689760681, 122646936325, 693519457822, 3921575652821, 22174944672838, 125390459051898, 709032985366923
Offset: 0
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
-
LinearRecurrence[{5, 6, -11, -12, 4}, {1, 1, 5, 22, 117}, 22] (* Jean-François Alcover, Dec 10 2018 *)
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n - k <= 5];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 03 2019 *)
Comments