cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A172290 Prime divisors of 2^1092-1, listed with multiplicities.

Original entry on oeis.org

3, 3, 5, 7, 7, 13, 13, 29, 43, 53, 79, 113, 127, 157, 313, 337, 547, 911, 1093, 1093, 1249, 1429, 1613, 2731, 3121, 4733, 5419, 8191, 14449, 21841, 121369, 224771, 503413, 1210483, 1948129, 22366891, 108749551, 112901153, 23140471537, 25829691707, 105310750819, 467811806281, 4093204977277417, 8861085190774909, 556338525912325157, 86977595801949844993, 275700717951546566946854497, 292653113147157205779127526827, 3194753987813988499397428643895659569
Offset: 1

Views

Author

Artur Jasinski, Jan 30 2010

Keywords

Comments

Up to now only two primes p such that p^2 divide 2^(p-1)-1 are known (these two are Wieferich primes, see A001220).
The sequence is finite with A001222(2^1092-1) = 49 terms; A001221(2^1092-1) = 45. - Reinhard Zumkeller, May 14 2010
Terms appearing more than once (in fact twice) are 3, 7, 13, and 1093.

Crossrefs

Extensions

Missing terms a(34) and a(35) inserted by Reinhard Zumkeller, May 14 2010
Definition clarified and terms corrected by Joerg Arndt, Apr 25 2011

A067886 Numbers k such that 2^k+1 and 2^k-1 have the same number of distinct prime factors.

Original entry on oeis.org

2, 3, 6, 9, 11, 14, 15, 18, 21, 23, 27, 29, 33, 42, 47, 51, 53, 54, 57, 69, 71, 73, 74, 81, 82, 86, 95, 101, 105, 111, 113, 114, 115, 121, 129, 130, 138, 141, 142, 165, 167, 169, 179, 181, 199, 203, 209, 213, 230, 233, 235, 243, 250, 255, 258, 277, 279, 306, 307
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

Numbers k such that omega(2^k+1) = omega(2^k-1).

Crossrefs

Programs

  • Magma
    [k: k in [2..307] | #PrimeDivisors(2^k-1) eq #PrimeDivisors(2^k+1) ]; // Marius A. Burtea, Feb 13 2020
  • Mathematica
    sndpQ[n_]:=Module[{c=2^n},PrimeNu[c+1]==PrimeNu[c-1]]; Select[Range[ 250], sndpQ] (* Harvey P. Dale, Feb 04 2016 *)
  • PARI
    isok(k) = omega(2^k-1) == omega(2^k+1); \\ Michel Marcus, Feb 13 2020
    

Extensions

More terms from Rick L. Shepherd, May 14 2002
More terms from Amiram Eldar, Feb 13 2020

A335432 Number of anti-run permutations of the prime indices of Mersenne numbers A000225(n) = 2^n - 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 6, 2, 6, 2, 36, 1, 6, 6, 24, 1, 24, 1, 240, 6, 24, 2, 1800, 6, 6, 6, 720, 6, 1800, 1, 120, 24, 6, 24, 282240, 2, 6, 24, 15120, 2, 5760, 6, 5040, 720, 24, 6, 1451520, 2, 5040, 120, 5040, 6, 1800, 720, 40320, 24, 720, 2, 1117670400, 1, 6, 1800, 5040, 6
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(10) = 6 permutations:
  ()  (2)  (4)  (2,3)  (11)  (2,4,2)  (31)  (2,3,7)  (21,4)  (11,2,5)
                (3,2)                       (2,7,3)  (4,21)  (11,5,2)
                                            (3,2,7)          (2,11,5)
                                            (3,7,2)          (2,5,11)
                                            (7,2,3)          (5,11,2)
                                            (7,3,2)          (5,2,11)
		

Crossrefs

The version for factorial numbers is A335407.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Permutations of prime indices are A008480.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[2^n-1]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,30}]
  • PARI
    \\ See A335452 for count.
    a(n) = {count(factor(2^n-1)[,2])} \\ Andrew Howroyd, Feb 03 2021

Formula

a(n) = A335452(A000225(n)).

Extensions

Terms a(51) and beyond from Andrew Howroyd, Feb 03 2021

A283364 Numbers m such that both numbers 2^m +- 1 have at most 2 distinct prime factors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 17, 19, 23, 31, 61, 101, 127, 167, 199, 347
Offset: 1

Views

Author

Vladimir Shevelev, Mar 06 2017

Keywords

Comments

If a(n) > 9 then a(n) is prime. Proof: If k = 2*m > 9 then 2^(2*m)-1 has at least 3 factors; being 3, (2^m - 1) / 3 and 2^m + 1 which excludes even numbers > 9.
If k = 2*m + 1 > 9 is not prime then k = p*q, q, p > 3 so 2^(p*q) + 1 is divisible by 3, 2^p + 1 and 2^q + 1. If p = q then 2^(p^2) + 1 is divisible by 3, 2^p + 1 and (2^p^2 + 1) / (2^p + 1) > 2^p + 1. Which excludes odd composite numbers > 9 and completes the proof. [comments reworded by David A. Corneth, Nov 23 2019]
Any further terms are > 1122. - Lucas A. Brown, Oct 21 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 200, Times @@ Boole@ Map[PrimeNu@ # <= 2 &, 2^# + {-1, 1}] == 1 &] (* Michael De Vlieger, Mar 06 2017 *)
    Select[Range[350],Max[PrimeNu[2^#+{1,-1}]]<3&] (* Harvey P. Dale, Dec 23 2017 *)
  • PARI
    isok(n) = omega(2^n+1)<=2 && omega(2^n-1)<=2;
    for(n=1, 347, if(isok(n)==1, print1(n,", "))); \\ Indranil Ghosh, Mar 06 2017

Extensions

More terms from Peter J. C. Moses, Mar 06 2017

A337811 Numbers k such that the number of distinct prime factors of 2^k - 1 is less than the corresponding count for 2^k + 1.

Original entry on oeis.org

1, 5, 7, 13, 17, 19, 25, 26, 31, 34, 35, 37, 38, 41, 46, 49, 59, 61, 62, 65, 67, 77, 78, 83, 85, 89, 91, 93, 97, 98, 103, 107, 109, 118, 122, 123, 125, 127, 131, 133, 134, 137, 139, 143, 145, 147, 149, 153, 157, 170, 173, 175, 177, 185, 186, 189, 193, 194, 195
Offset: 1

Views

Author

Hugo Pfoertner, Sep 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeNu[2^#-1]Harvey P. Dale, Nov 04 2023 *)
  • PARI
    for(n=1,200,if(omega(2^n-1)
    				

A337813 Numbers k such that the number of distinct prime factors of 2^k - 1 is greater than the corresponding count for 2^k + 1.

Original entry on oeis.org

4, 8, 10, 12, 16, 20, 22, 24, 28, 30, 32, 36, 39, 40, 43, 44, 45, 48, 50, 52, 55, 56, 58, 60, 63, 64, 66, 68, 70, 72, 75, 76, 79, 80, 84, 87, 88, 90, 92, 94, 96, 99, 100, 102, 104, 106, 108, 110, 112, 116, 117, 119, 120, 124, 126, 128, 132, 135, 136, 140, 144
Offset: 1

Views

Author

Hugo Pfoertner, Sep 23 2020

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,150,if(omega(2^n-1)>omega(2^n+1),print1(n,", ")))

A152057 Sum of the distinct prime factors of 2^n-1.

Original entry on oeis.org

0, 0, 3, 7, 8, 31, 10, 127, 25, 80, 45, 112, 28, 8191, 173, 189, 282, 131071, 102, 524287, 91, 471, 798, 178528, 286, 2433, 10925, 262737, 320, 3425, 534, 2147483647, 65819, 599598, 174765, 123150, 266, 616318400, 699053, 129646, 61789, 164524720, 5936
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2008

Keywords

Crossrefs

Row sums of A060443.

Programs

  • Maple
    sopf:= n -> convert(numtheory:-factorset(n),`+`):
    seq(sopf(2^n-1),n=0..100); # Robert Israel, Jan 14 2021
  • Mathematica
    Table[Sum[FactorInteger[2^n - 1][[m]][[1]], {m, 1, Length[FactorInteger[2^n - 1]]}], {n, 0, 50}]

Formula

a(n) = A008472(A000225(n)). - Robert Israel, Jan 14 2021

Extensions

Edited by N. J. A. Sloane, Nov 26 2008

A257861 Numbers n such that d(m) - f(m) >= n/2^f(m), where m = 2^n - 1, d(m) is the number of distinct prime factors of m, and f(m) is the number of Fermat primes less than or equal to 65537 that divide m.

Original entry on oeis.org

24, 48, 64, 72, 80, 96, 112, 128, 144, 160, 192, 224, 240, 288, 320, 336, 352, 384, 416, 448, 480, 576, 672, 800, 864, 960, 1056, 1440
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 16 2015

Keywords

Comments

For every n there exists a Sierpiński/Riesel number with modulus a(n).

Crossrefs

Programs

  • PARI
    lista(nn) = {vfp = [3, 5, 17, 257, 65537]; for(n = 1, nn, m = 2^n-1; dm = omega(m); fm = sum(k=1, #vfp, (m % vfp[k]) == 0); if (dm - fm >= n/2^fm, print1(n, ", ")););} \\ Michel Marcus, Jul 20 2015

A152058 Primes in A152057 in the order of their appearance.

Original entry on oeis.org

3, 7, 31, 127, 8191, 173, 131071, 524287, 2147483647, 699053, 3313, 13271393, 2305843009213693951, 209659, 9361975431089, 10670593, 618970019642690137449562111, 18861569, 23253381919, 162259276829213363391578010288127, 177722254122587407, 170141183460469231731687303715884105727
Offset: 1

Views

Author

Roger L. Bagula, Nov 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[PrimeQ[s = Total[FactorInteger[2^n - 1][[;; , 1]]]], s, Nothing], {n, 1, 50}] (* Amiram Eldar, Jun 07 2025 *)

Extensions

Edited by N. J. A. Sloane, Nov 26 2008
Definition revised, offset corrected and more terms added by Amiram Eldar, Jun 07 2025

A244453 Prime factors of 2^A054723(n)-1, ordered by increasing n, then by increasing size of the factors.

Original entry on oeis.org

23, 89, 47, 178481, 233, 1103, 2089, 223, 616318177, 13367, 164511353, 431, 9719, 2099863, 2351, 4513, 13264529, 6361, 69431, 20394401, 179951, 3203431780337, 193707721, 761838257287, 228479, 48544121, 212885833
Offset: 1

Views

Author

Felix Fröhlich, Jun 28 2014

Keywords

Comments

Subsequence of A060443.
Prime factors of composite Mersenne numbers; A089162 with the Mersenne primes A000668 removed. - Jens Kruse Andersen, Jul 11 2014

Examples

			A054723(1) = 11. 2^11-1 = 2047 = 23*89. - _Jens Kruse Andersen_, Jul 11 2014
Triangle begins:
23, 89;
47, 178481;
233, 1103, 2089;
223, 616318177;
13367, 164511353;
431, 9719, 2099863;
2351, 4513, 13264529;
6361, 69431, 20394401;
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger, Select[2^Prime@Range@20 - 1, CompositeQ]][[All, All, 1]] // Flatten (* Michael De Vlieger, Nov 20 2018 *)
  • PARI
    forprime(n=1, 100, m=2^n-1; if(!isprime(m), f=factor(m); for(i=1, #f~, print1(f[i,1]", ")))) \\ Jens Kruse Andersen, Jul 11 2014
Previous Showing 21-30 of 35 results. Next