cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A191740 Dispersion of A047220, (numbers >1 and congruent to 0 or 1 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 11, 10, 8, 7, 20, 18, 15, 13, 9, 35, 31, 26, 23, 16, 12, 60, 53, 45, 40, 28, 21, 14, 101, 90, 76, 68, 48, 36, 25, 17, 170, 151, 128, 115, 81, 61, 43, 30, 19, 285, 253, 215, 193, 136, 103, 73, 51, 33, 22, 476, 423, 360, 323, 228, 173, 123
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....3....6....11...20
2....5....10...18...31
4....8....15...26...45
7....13...23...40...68
9....16...28...48...81
12...21...36...61...103
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047220 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
      (* A191740 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191740  *)

A191741 Dispersion of A047217, (numbers >1 and congruent to 0 or 1 or 2 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 10, 11, 7, 8, 17, 20, 12, 15, 9, 30, 35, 21, 26, 16, 13, 51, 60, 36, 45, 27, 22, 14, 86, 101, 61, 76, 46, 37, 25, 18, 145, 170, 102, 127, 77, 62, 42, 31, 19, 242, 285, 171, 212, 130, 105, 71, 52, 32, 23, 405, 476, 286, 355, 217, 176, 120
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....5....10...17
3....6....11...20...35
4....7....12...21...36
8....15...26...45...76
9....16...27...46...77
13...22...37...62...105
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047217 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191741 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191741  *)

A301568 Expansion of Product_{k>=1} (1 + x^(5*k))*(1 + x^(5*k-3)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 2, 2, 0, 5, 0, 4, 2, 1, 7, 0, 7, 3, 2, 10, 0, 11, 4, 4, 14, 0, 17, 5, 8, 19, 1, 25, 6, 13, 25, 2, 36, 8, 21, 33, 4, 50, 10, 33, 43, 8, 69, 12, 49, 55, 14, 93, 16, 71, 70, 23, 124, 20, 102, 88, 37, 163, 26, 142, 110, 57, 212
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 0 or 2 mod 5.

Examples

			a(12) = 3 because we have [12], [10, 2] and [7, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 74; CoefficientList[Series[Product[(1 + x^(5 k)) (1 + x^(5 k - 3)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 74; CoefficientList[Series[x^3 QPochhammer[-1, x^5] QPochhammer[-x^(-3), x^5]/(2 (1 + x) (1 - x + x^2)), {x, 0, nmax}], x]
    nmax = 74; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 2}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A047215(k)).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(33/20) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

A235089 a(n)*Pi is the total length of irregular spiral (center points: 2, 1, 3, 4) after n rotations.

Original entry on oeis.org

3, 10, 13, 20, 23, 30, 33, 40, 43, 50, 53, 60, 63, 70, 73, 80, 83, 90, 93, 100, 103, 110, 113, 120, 123, 130, 133, 140, 143, 150, 153, 160, 163, 170, 173, 180, 183, 190, 193, 200, 203, 210, 213, 220, 223, 230, 233, 240, 243, 250, 253, 260, 263, 270, 273, 280, 283, 290, 293, 300, 303, 310, 313, 320, 323, 330, 333
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 03 2014

Keywords

Comments

Let points 2, 1, 3 & 4 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle and maintain continuity of circumferences. Continue using this procedure at point 3, 4, 1, ... and so on. The form is non-expanded loop.
The alternative point order [2, 3, 1, 4] gives the same pattern with reflection, but the sequence will be 2*A047215(n). See illustration in links.
Conjecture: Numbers equivalent 0 or 3 modulo 10. - Ralf Stephan, Jan 13 2014

Crossrefs

Cf. A014105*Pi (total spiral length, 2 inline center points). A234902*Pi, A234903*Pi, A234904*Pi (total spiral length, 3 inline center points).
Conjectured partial sums of A010705.

Formula

Conjecture: a(n) = -1+(-1)^n+5*n. a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: x*(7*x+3) / ((x-1)^2*(x+1)). - Colin Barker, Jan 16 2014

A075325 Pair the natural numbers such that the m-th pair is (r, s) where r, s and s-r are the smallest numbers which have not occurred earlier and also are not equal to the difference of any earlier pair: (1, 3), (4, 9), (6, 13), (8, 18), (11, 23), (14, 29), (16, 33), (19, 39), (21, 43), (24, 49), (26, 53), (28, 58), ... Sequence gives first term of each pair.

Original entry on oeis.org

1, 4, 6, 8, 11, 14, 16, 19, 21, 24, 26, 28, 31, 34, 36, 38, 41, 44, 46, 48, 51, 54, 56, 59, 61, 64, 66, 68, 71, 74, 76, 79, 81, 84, 86, 88, 91, 94, 96, 99, 101, 104, 106, 108, 111, 114, 116, 118, 121, 124, 126, 128, 131, 134, 136, 139, 141, 144, 146, 148, 151, 154, 156
Offset: 1

Views

Author

Amarnath Murthy, Sep 16 2002

Keywords

Comments

Most of the pairs are of the form (r,2r+1) except for the ones like a(4) = (8,18) and a(12) = (28,58) and (38,78) etc. which are of the form (r,2r +2).

Examples

			The first pair (1, 3) covers 1, 2, 3. The second pair is (4, 9) covering 4, 5, 9.
		

Crossrefs

The sequence formed by listing the differences between the second and first elements of each pair is A047215.

Programs

  • Mathematica
    (* Here, the offset for (a(n)) is 0. *)
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {}; b = {}; c = {};
    Do[AppendTo[a,
       mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]];
      AppendTo[b, mex[Flatten[{a, b, c}], Last[a]]];
      AppendTo[c, Last[a] + Last[b]], {z}];
    Take[a, 100] (* A075325 *)
    Take[b, 100] (* A047215 *)
    Take[c, 100] (* A075326 *)
    Grid[{Join[{"n"}, Range[0, 20]], Join[{"a(n)"}, Take[a, 21]],
      Join[{"b(n)"}, Take[b, 21]], Join[{"c(n)"}, Take[c, 21]]},
     Alignment -> ".",
     Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}]
    (* Peter J. C. Moses, Apr 26 2018 *)
  • PARI
    used = vector(500); i = 1; A = vector(80); B = A; C = A; for (n = 1, 80, while (used[i], i++); j = i + 1; while (used[j] || used [i + j], j++); A[n] = i; B[n] = i + j; C[n] = i + i + j; used[i] = 1; used[j] = 1; used[i + j] = 1); A \\ David Wasserman, Jan 16 2005

Formula

Let A(n) = A007814(n). Let B(n) = A(n) + 1 if A(n) < 2; B(n) = 0 if A(n)>=2 & A(n) is even; B(n) = 2 if A(n) >= 2 & A(n) is odd. Then a(n) = (5n+B(n)-4)/2. - John Chew (jjchew(AT)math.utoronto.ca), Jun 20 2006

Extensions

More terms from David Wasserman, Jan 16 2005

A183575 a(n) = n - 1 + ceiling((n^2-2)/2); complement of A183574.

Original entry on oeis.org

0, 2, 6, 10, 16, 22, 30, 38, 48, 58, 70, 82, 96, 110, 126, 142, 160, 178, 198, 218, 240, 262, 286, 310, 336, 362, 390, 418, 448, 478, 510, 542, 576, 610, 646, 682, 720, 758, 798, 838, 880, 922, 966, 1010, 1056, 1102, 1150, 1198, 1248, 1298, 1350, 1402, 1456, 1510, 1566, 1622, 1680, 1738, 1798, 1858, 1920, 1982, 2046, 2110, 2176, 2242, 2310, 2378, 2448, 2518
Offset: 1

Views

Author

Clark Kimberling, Jan 05 2011

Keywords

Comments

Agrees with the circumference of the n X n stacked book graph for n = 2 up to at least n = 8. - Eric W. Weisstein, Dec 05 2017
It seems that a(n-1) is the maximal length of an optimal solution path required to solve any n X n maze. Here the maze has a single start point, a single end point, and any number of walls that cannot be traversed. The maze is 4-connected, so the allowed moves are: up, down, left and right. For odd n, the hardest mazes have walls located in a spiral, start point in one corner and end point in the center. - Dmitry Kamenetsky, Mar 06 2018

Crossrefs

Cf. A183574 (complement).

Programs

  • Mathematica
    Table[Ceiling[n^2/2 - 1] + n - 1, {n, 20}] (* Eric W. Weisstein, May 18 2017 *)
    Table[(2 n (n + 2) - 7 - (-1)^n)/4, {n, 20}] (* Eric W. Weisstein, May 18 2017 *)
    Table[If[Mod[n, 2] == 0, n^2 + 2 n - 4, (n + 3) (n - 1)]/2, {n, 20}] (* Eric W. Weisstein, May 18 2017 *)
    LinearRecurrence[{2,0,-2,1},{0,2,6,10},80] (* Harvey P. Dale, Feb 19 2021 *)
  • PARI
    concat(0, Vec(2*x*(1 + x - x^2) / ((1 - x)^3*(1 + x)) + O(x^60))) \\ Colin Barker, Dec 07 2017

Formula

a(n) = n - 1 + ceiling(n^2/2-1).
a(n) = A000217(n-2) + A047215(n-1). - Wesley Ivan Hurt, Jul 15 2013
From Colin Barker, Dec 07 2017: (Start)
G.f.: 2*x^2*(1 + x - x^2) / ((1 - x)^3*(1 + x)).
a(n) = (n^2 + 2*n - 4)/2 for n even.
a(n) = (n^2 + 2*n - 3)/2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 4.
(End)
Sum_{n>=2} 1/a(n) = 7/8 + tan(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)). - Amiram Eldar, Sep 16 2022
E.g.f.: (4 + (x^2 + 3*x - 4)*cosh(x) + (x^2 + 3*x - 3)*sinh(x))/2. - Stefano Spezia, Sep 05 2023

Extensions

Description corrected by Eric W. Weisstein, May 18 2017
a(1)=0 inserted by Amiram Eldar, Sep 16 2022

A256680 Minimal most likely sum for a roll of n 4-sided dice.

Original entry on oeis.org

0, 1, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157, 160, 162
Offset: 0

Views

Author

Ran Pan, Apr 08 2015

Keywords

Comments

In fact ceiling(5n/2) and floor(5n/2) have the same probability.
a(n) equals A047215(n) except for n=1.

Examples

			For n=1, there are four equally likely outcomes, 1,2,3,4, and the smallest of these is 1, so a(1)=1.
		

Crossrefs

Programs

  • Magma
    [n le 1 select n else Floor(5*n/2): n in [0..70]]; // Vincenzo Librandi, Apr 08 2015
    
  • Maple
    a:= n-> iquo(5*n, 2) -`if`(n=1, 1, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 08 2015
  • Mathematica
    Join[{0, 1}, Table[Floor[5 n/2], {n, 2, 100}]]
  • PARI
    a(n)=if(n<2,n,5*n\2) \\ Charles R Greathouse IV, Apr 08 2015
    
  • PARI
    concat(0, Vec(-x*(x^3-x^2-4*x-1)/((x-1)^2*(x+1)) + O(x^100))) \\ Colin Barker, Apr 08 2015

Formula

a(n) = floor(5*n/2), for n>=2; a(0)=0 and a(1)=1.
From Colin Barker, Apr 08 2015: (Start)
a(n) = (-1+(-1)^n+10*n)/4 for n>1.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>4.
G.f.: -x*(x^3-x^2-4*x-1) / ((x-1)^2*(x+1)).
(End)
a(n)-a(n-1) = A010693(n-3), n>=3. - R. J. Mathar, Aug 08 2025

A032769 Numbers that are congruent to {0, 1, 2, 4} mod 5.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Also, numbers m such that m*(m+1)*(m+2)*(m+3)*(m+4)/(m+(m+1)+(m+2)+(m+3)+(m+4)) is an integer.

Crossrefs

Programs

Formula

a(n) = (1/8)*(10*n-11+(-1)^n+2*(-1)^floor(n/2)). - Ralf Stephan, Jun 09 2005
a(n) = floor((5*n-4)/4). - Gary Detlefs, Mar 06 2010
G.f.: x^2*(1+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 30 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-11+i^(2*n)+(1+i)*I^(-n)+(1-i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047209(k), a(2k-1) = A047215(k). (End)
E.g.f.: (4 + sin(x) + cos(x) + (5*x - 6)*sinh(x) + 5*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 31 2016
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + 3*sqrt(5)*log(phi)/10 - sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021

Extensions

Better description from Michael Somos, Jun 08 2000

A140869 Triangle read by rows where T(m,n) = floor((2mn+m+n-2)/2), m >= n >= 1.

Original entry on oeis.org

1, 2, 5, 4, 7, 11, 5, 10, 14, 19, 7, 12, 18, 23, 29, 8, 15, 21, 28, 34, 41, 10, 17, 25, 32, 40, 47, 55, 11, 20, 28, 37, 45, 54, 62, 71, 13, 22, 32, 41, 51, 60, 70, 79, 89, 14, 25, 35, 46, 56, 67, 77, 88, 98, 109, 16, 27, 39, 50, 62, 73, 85, 96, 108, 119, 131, 17, 30, 42, 55, 67, 80, 92, 105, 117, 130, 142, 155
Offset: 1

Views

Author

Vincenzo Librandi, Jan 16 2009

Keywords

Comments

Conjecture: If h does not belong to the sequence, then 4*h+5 is prime. - Vincenzo Librandi, Nov 18 2012
First column: A001651; second column: A047215; third column: A047345. - Vincenzo Librandi, Nov 18 2012

Examples

			Triangle begins:
1;
2,  5;
4,  7,  11;
5,  10, 14, 19;
7,  12, 18, 23, 29;
8,  15, 21, 28, 34, 41;
10, 17, 25, 32, 40, 47, 55; etc.
		

Crossrefs

Programs

A038126 a(n) = floor( sqrt(2*Pi)*n ) (a Beatty sequence).

Original entry on oeis.org

0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157
Offset: 0

Views

Author

Keywords

Comments

Of course this is different from A047215 (they first differ at n=77).

Crossrefs

Programs

  • Magma
    R:= RealField(20); [Floor(n*Sqrt(2*Pi(R))): n in [0..100]]; // G. C. Greubel, Sep 08 2018
  • Mathematica
    With[{c=Sqrt[2*Pi]},Floor[c*#]&/@Range[0,70]] (* Harvey P. Dale, Nov 14 2014 *)
  • PARI
    vector(100, n, n--; floor(n*sqrt(2*Pi))) \\ G. C. Greubel, Sep 08 2018
    
Previous Showing 21-30 of 34 results. Next