A193053
a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.
Original entry on oeis.org
1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326
Offset: 0
Cf.
A195020 (vertices of the numerical spiral in link).
Cf.
A001106,
A022264,
A033572,
A144555,
A152760,
A158482,
A158485,
A185019,
A195021,
A195023-
A195030,
A195320,
A198017 [incomplete list].
-
[(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];
-
Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{1,2,-2,-1,1},{1,5,10,17,26},60] (* Harvey P. Dale, Jun 19 2020 *)
-
for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));
A198442
Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,0).
Original entry on oeis.org
0, 0, 2, 3, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812
Offset: 1
For n = 6 the a(6) = 8 solutions are (0,0,0,1,1,0), (0,1,0,1,1,0),(0,0,1,1,1,0), (1,0,1,1,1,0), (0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and
(0,0,0,1,0,0), (0,1,0,1,0,0) for Kain.
G.f. = 2*x^3 + 3*x^4 + 6*x^5 + 8*x^6 + 12*x^7 + 15*x^8 + 20*x^9 + ...
- J. J. Duistermaat, Discrete Integrable Systems, 2010, Springer Science+Business Media.
- A. Engel, Wahrscheinlichkeitsrechnung und Statistik, Band 2, Klett, 1978, pages 25-26.
Cf.
A000004,
A002620,
A004526,
A004652,
A005843,
A008585,
A008586,
A023443,
A028242,
A047221,
A047336,
A052928,
A242477,
A265611.
-
[(2*n^2-5-3*(-1)^n)/8: n in [1..60]]; // Vincenzo Librandi, Oct 28 2011
-
for n from 1 by 2 to 99 do
a(n):=(n^2-1)/4:
a(n+1):=(n+1)^2/4-1:
end do:
seq(a(n),n=1..100);
-
a[ n_] := Quotient[ n^2 - 1, 4]; (* Michael Somos, Jan 09 2015 *)
-
a(n)=([1,1,0,0,0,0;0,0,1,1,0,0;0,1,0,0,1,0;0,0,0,1,1,0;0,0,0,0,0,2;0,0,0,0,0,2]^n)[1,5] \\ Charles R Greathouse IV, Oct 26 2011
-
{a(n) = (n^2 - 1) \ 4}; /* Michael Somos, Jan 09 2015 */
-
sub a {
my ($t, $n) = (0, shift);
for (0..((1<<$n)-1)) {
my $str = substr unpack("B32", pack("N", $_)), -$n;
$t++ if ($str =~ /1.0$/ and not $str =~ /1.0./);
}
return $t
} # Charles R Greathouse IV, Oct 26 2011
-
def A198442():
yield 0
x, y = 0, 2
while True:
yield x
x, y = x + y, x//y + 1
a = A198442(); print([next(a) for i in range(57)]) # Peter Luschny, Dec 22 2015
A175886
Numbers that are congruent to {1, 12} mod 13.
Original entry on oeis.org
1, 12, 14, 25, 27, 38, 40, 51, 53, 64, 66, 77, 79, 90, 92, 103, 105, 116, 118, 129, 131, 142, 144, 155, 157, 168, 170, 181, 183, 194, 196, 207, 209, 220, 222, 233, 235, 246, 248, 259, 261, 272, 274, 285, 287, 298, 300, 311, 313, 324, 326, 337, 339, 350
Offset: 1
Cf.
A000217,
A091998,
A113801,
A005408,
A047209,
A007310,
A047336,
A047522,
A056020,
A090771,
A175885,
A175887.
-
a175886 n = a175886_list !! (n-1)
a175886_list = 1 : 12 : map (+ 13) a175886_list
-- Reinhard Zumkeller, Jan 07 2012
-
[n: n in [1..350] | n mod 13 in [1, 12]]; // Bruno Berselli, Feb 29 2012
-
[(26*n+9*(-1)^n-13)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
-
Select[Range[1, 350], MemberQ[{1, 12}, Mod[#, 13]]&] (* Bruno Berselli, Feb 29 2012 *)
CoefficientList[Series[(1 + 11 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{1,1,-1},{1,12,14},60] (* Harvey P. Dale, Oct 23 2015 *)
-
a(n)=(26*n+9*(-1)^n-13)/4 \\ Charles R Greathouse IV, Sep 24 2015
A175887
Numbers that are congruent to {1, 14} mod 15.
Original entry on oeis.org
1, 14, 16, 29, 31, 44, 46, 59, 61, 74, 76, 89, 91, 104, 106, 119, 121, 134, 136, 149, 151, 164, 166, 179, 181, 194, 196, 209, 211, 224, 226, 239, 241, 254, 256, 269, 271, 284, 286, 299, 301, 314, 316, 329, 331, 344, 346, 359, 361, 374, 376, 389, 391, 404
Offset: 1
Cf.
A000217,
A019693,
A019976,
A113801,
A175886,
A091998,
A175885,
A090771,
A056020,
A047522,
A047336,
A007310,
A047209,
A005408,
A001651.
-
a175887 n = a175887_list !! (n-1)
a175887_list = 1 : 14 : map (+ 15) a175887_list
-- Reinhard Zumkeller, Jan 07 2012
-
[n: n in [1..450] | n mod 15 in [1,14]];
-
[(30*n+11*(-1)^n-15)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
-
Select[Range[1, 450], MemberQ[{1,14}, Mod[#, 15]]&]
CoefficientList[Series[(1 + 13 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
-
a(n)=(30*n+11*(-1)^n-15)/4 \\ Charles R Greathouse IV, Sep 28 2015
A195041
Concentric heptagonal numbers.
Original entry on oeis.org
0, 1, 7, 15, 28, 43, 63, 85, 112, 141, 175, 211, 252, 295, 343, 393, 448, 505, 567, 631, 700, 771, 847, 925, 1008, 1093, 1183, 1275, 1372, 1471, 1575, 1681, 1792, 1905, 2023, 2143, 2268, 2395, 2527, 2661, 2800, 2941, 3087, 3235, 3388, 3543
Offset: 0
-
a195041 n = a195041_list !! n
a195041_list = scanl (+) 0 a047336_list
-- Reinhard Zumkeller, Jan 07 2012
-
[7*n^2/4+3*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
-
CoefficientList[Series[-((x (1+5 x+x^2))/((-1+x)^3 (1+x))),{x,0,80}],x] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,7,15},80] (* Harvey P. Dale, Jan 18 2021 *)
-
a(n)=7*n^2\4 \\ Charles R Greathouse IV, Oct 07 2015
A045472
Primes congruent to {1, 6} mod 7.
Original entry on oeis.org
13, 29, 41, 43, 71, 83, 97, 113, 127, 139, 167, 181, 197, 211, 223, 239, 251, 281, 293, 307, 337, 349, 379, 419, 421, 433, 449, 461, 463, 491, 503, 547, 587, 601, 617, 631, 643, 659, 673, 701, 727, 743, 757, 769
Offset: 1
-
a045472 n = a045472_list !! (n-1)
a045472_list = [x | x <- a047336_list, a010051 x == 1]
-- Reinhard Zumkeller, Jan 07 2012
-
[ p: p in PrimesUpTo(1000) | p mod 7 in {1,6} ]; // Vincenzo Librandi, Aug 13 2012
-
Select[Prime[Range[200]],MemberQ[{1,6},Mod[#,7]]&] (* Vincenzo Librandi, Aug 13 2012 *)
-
select(p->abs(centerlift(Mod(p,7)))==1, primes(100)) \\ Charles R Greathouse IV, Mar 17 2022
A186439
Numbers whose squares end in three identical digits.
Original entry on oeis.org
38, 100, 200, 300, 400, 462, 500, 538, 600, 700, 800, 900, 962, 1000, 1038, 1100, 1200, 1300, 1400, 1462, 1500, 1538, 1600, 1700, 1800, 1900, 1962, 2000, 2038, 2100, 2200, 2300, 2400, 2462, 2500, 2538, 2600, 2700, 2800, 2900, 2962, 3000, 3038, 3100, 3200, 3300, 3400, 3462
Offset: 1
462 is in the sequence because 462^2 = 213444.
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
-
with(numtheory):T:=array(1..10):for p from 1 to 10000 do:n:=p^2:l:=length(n):n0:=n:for
m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :T[m]:=u:od:if T[1]=T[2]
and T[1]=T[3] then printf(`%d, `,p):else fi:od:
# second Maple program:
a:= proc(n) local m, r;
r:= 1+ irem(n-1, 7, 'm');
[38, 100, 200, 300, 400, 462, 500][r] +500*m
end:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 24 2011
-
Select[Range[11,10000],Mod[PowerMod[#,2,1000],111]==0&] (* Zak Seidov, Feb 23 2011 *)
-
for(n=11,10000,if((n^2%1000)%111==0,print1(n", "))) \\ Zak Seidov, Feb 23 2011
-
Vec(2*x*(19*x^2 +12*x +19)*(x^4 +x^3 +x^2 +x +1)/((x -1)^2*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)) + O(x^100)) \\ Colin Barker, Jul 03 2014
-
def ok(n): s = str(n*n); return len(s) > 2 and s[-1] == s[-2] == s[-3]
print(list(filter(ok, range(3463)))) # Michael S. Branicky, Jul 29 2021
A047283
Numbers that are congruent to {0, 1, 3, 6} mod 7.
Original entry on oeis.org
0, 1, 3, 6, 7, 8, 10, 13, 14, 15, 17, 20, 21, 22, 24, 27, 28, 29, 31, 34, 35, 36, 38, 41, 42, 43, 45, 48, 49, 50, 52, 55, 56, 57, 59, 62, 63, 64, 66, 69, 70, 71, 73, 76, 77, 78, 80, 83, 84, 85, 87, 90, 91, 92, 94, 97, 98, 99, 101, 104, 105, 106, 108, 111
Offset: 1
-
[n : n in [0..150] | n mod 7 in [0, 1, 3, 6]]; // Wesley Ivan Hurt, May 22 2016
-
A047283:=n->(14*n-15+I^(2*n)+(3+I)*I^(-n)+(3-I)*I^n)/8: seq(A047283(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
-
Select[Range[0,100], MemberQ[{0,1,3,6}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,3,6,7}, 60] (* Harvey P. Dale, Mar 09 2012 *)
A047322
Numbers that are congruent to {0, 1, 5, 6} mod 7.
Original entry on oeis.org
0, 1, 5, 6, 7, 8, 12, 13, 14, 15, 19, 20, 21, 22, 26, 27, 28, 29, 33, 34, 35, 36, 40, 41, 42, 43, 47, 48, 49, 50, 54, 55, 56, 57, 61, 62, 63, 64, 68, 69, 70, 71, 75, 76, 77, 78, 82, 83, 84, 85, 89, 90, 91, 92, 96, 97, 98, 99, 103, 104, 105, 106, 110, 111
Offset: 1
-
[n : n in [0..150] | n mod 7 in [0, 1, 5, 6]]; // Wesley Ivan Hurt, May 23 2016
-
A047322:=n->(14*n-11-3*I^(2*n)+(3-3*I)*I^(-n)+(3+3*I)*I^n)/8: seq(A047322(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
-
Table[(14n-11-3*I^(2n)+(3-3*I)*I^(-n)+(3+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 23 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 5, 6, 7}, 60] (* Vincenzo Librandi, May 24 2016 *)
A323674
Square array, read by antidiagonals, of the positive integers 6cd +-c +-d = (6c +- 1)d +- c. Alternate rows (or columns) are numbers that differ by c from multiples of 6c - 1 or 6c + 1.
Original entry on oeis.org
4, 6, 6, 9, 8, 9, 11, 13, 13, 11, 14, 15, 20, 15, 14, 16, 20, 24, 24, 20, 16, 19, 22, 31, 28, 31, 22, 19, 21, 27, 35, 37, 37, 35, 27, 21, 24, 29, 42, 41, 48, 41, 42, 29, 24, 26, 34, 46, 50, 54, 54, 50, 46, 34, 26, 29, 36, 53, 54, 65, 60, 65, 54, 53, 36, 29, 31, 41, 57, 63, 71, 73, 73, 71, 63, 57, 41, 31
Offset: 1
Square array begins:
4, 6, 9, 11, 14, 16, 19, 21, 24, 26, ...
6, 8, 13, 15, 20, 22, 27, 29, 34, 36, ...
9, 13, 20, 24, 31, 35, 42, 46, 53, 57, ...
11, 15, 24, 28, 37, 41, 50, 54, 63, 67, ...
14, 20, 31, 37, 48, 54, 65, 71, 82, 88, ...
16, 22, 35, 41, 54, 60, 73, 79, 92, 98, ...
19, 27, 42, 50, 65, 73, 88, 96, 111, 119, ...
21, 29, 46, 54, 71, 79, 96, 104, 121, 129, ...
24, 34, 53, 63, 82, 92, 111, 121, 140, 150, ...
26, 36, 57, 67, 88, 98, 119, 129, 150, 160, ...
...
Note that, for example, the third row (or column) contains numbers that differ by 2 from multiples of 11 = 6*2 - 1, and the eighth row contains numbers that differ by 4 from multiples of 25 = 6*4 + 1.
The diagonal is
A062717, the numbers x for which 6*x + 1 is a perfect square.
-
a(m,n) = 6*floor((m+1)/2)*floor((n+1)/2) + ((-1)^n)*floor((m+1)/2) + ((-1)^m)*floor((n+1)/2);
matrix(7, 7, n, k, a(n, k)) \\ Michel Marcus, Jan 25 2019
Comments