A084941
Octagorials: n-th polygorial for k=8.
Original entry on oeis.org
1, 1, 8, 168, 6720, 436800, 41932800, 5577062400, 981562982400, 220851671040000, 61838467891200000, 21086917550899200000, 8603462360766873600000, 4138265395528866201600000, 2317428621496165072896000000, 1494741460865026472017920000000, 1100129715196659483405189120000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(6*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[8, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n) = n! / 2^n * prod(i=0, n-1, 6*i+2) \\ Felix Fröhlich, Dec 13 2016
A011781
Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).
Original entry on oeis.org
1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, 678264862275, 38661097149675, 2435649120429525, 168059789309637225, 12604484198222791875, 1020963220056046141875, 88823800144876014343125, 8260613413473469333910625, 817800727933873464057151875
Offset: 0
Lee D. Killough (killough(AT)wagner.convex.com)
G.f. = 1 + 3*x + 27*x^2 + 405*x^3 + 8505*x^4 + 229635*x^5 + 7577955*x^6 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Fatemeh Bagherzadeh, M. Bremner, and S. Madariaga, Jordan Trialgebras and Post-Jordan Algebras, arXiv:1611.01214 [math.RA], 2016.
- Murray Bremner and Martin Markl, Distributive laws between the Three Graces, arXiv:1809.08191 [math.AT], 2018.
- Bodo Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333(3) (2001), 155-160.
- Bodo Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, Vol. 333, No. 3 (2001), pp. 155-160; alternative link.
- Valery Liskovets, A Note on the Total Number of Double Eulerian Circuits in Multigraphs , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.5.
-
F:=Factorial;; List([0..20], n-> (3/2)^n*(F(2*n)/F(n)) ); # G. C. Greubel, Aug 20 2019
-
[(3/2)^n*Factorial(2*n)/Factorial(n):n in [0..20]]; // Vincenzo Librandi, May 09 2012
-
Table[Product[6k+3,{k,0,n-1}],{n,0,20}] (* or *) Table[6^(n-1) Pochhammer[ 1/2,n-1],{n,21}] (* Harvey P. Dale, May 09 2012 *)
Table[6^n*Pochhammer[1/2, n], {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
-
{a(n) = if( n<0, (-1)^n / a(-n), (3/2)^n * (2*n)! / n!)}; /* Michael Somos, Feb 10 2002, revised and extended Michael Somos, Jan 06 2017 */
-
[6^n*rising_factorial(1/2, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
A034689
a(n) = n-th sextic factorial number divided by 2.
Original entry on oeis.org
1, 8, 112, 2240, 58240, 1863680, 70819840, 3116072960, 155803648000, 8725004288000, 540950265856000, 36784618078208000, 2722061737787392000, 217764939022991360000, 18727784755977256960000, 1722956197549907640320000, 168849707359890948751360000
Offset: 1
-
[n le 1 select 1 else (6*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
Table[6^n*Pochhammer[1/3, n]/2, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
-
[6^n*rising_factorial(1/3,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A114799
Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0
a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A085158 (and
A008542,
A047058,
A047657),
A045755.
-
a:= function(n)
if n<1 then return 1;
else return n*a(n-7);
fi;
end;
List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
-
b:= func< n | (n lt 8) select n else n*Self(n-7) >;
[1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
-
A114799 := proc(n)
option remember;
if n < 1 then
1;
else
n*procname(n-7) ;
end if;
end proc:
seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
-
a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
-
A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
-
def a(n):
if (n<1): return 1
else: return n*a(n-7)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
A084948
a(n) = Product_{i=0..n-1} (8*i+2).
Original entry on oeis.org
1, 2, 20, 360, 9360, 318240, 13366080, 668304000, 38761632000, 2558267712000, 189311810688000, 15523568476416000, 1397121162877440000, 136917873961989120000, 14513294639970846720000, 1654515588956676526080000, 201850901852714536181760000, 26240617240852889703628800000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
Cf.
A000079,
A000142,
A000165,
A008544,
A001813,
A047055,
A047657,
A048994,
A084943,
A084947,
A084949.
-
List([0..20], n-> Product([0..n-1], k-> 8*k+2) ); # G. C. Greubel, Aug 18 2019
-
[1] cat [(&*[8*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
-
a := n->product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
Table[8^n*Pochhammer[1/4, n], {n,0,20}] (* G. C. Greubel, Aug 18 2019 *)
-
vector(20, n, n--; prod(k=0, n-1, 8*k+2)) \\ G. C. Greubel, Aug 18 2019
-
[product(8*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
A084949
a(n) = Product_{i=0..n-1} (9*i+2).
Original entry on oeis.org
1, 2, 22, 440, 12760, 484880, 22789360, 1276204160, 82953270400, 6138542009600, 509498986796800, 46873906785305600, 4734264585315865600, 520769104384745216000, 61971523421784680704000, 7932354997988439130112000, 1086732634724416160825344000, 158662964669764759480500224000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # G. C. Greubel, Aug 19 2019
-
[1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 19 2019
-
a:= n-> product(9*i+2,i=0..n-1); seq(a(j),j=0..20);
-
Table[9^n*Pochhammer[2/9, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
-
vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ G. C. Greubel, Aug 19 2019
-
[product(9*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
A004117
Numerators of expansion of (1-x)^(-1/3).
Original entry on oeis.org
1, 1, 2, 14, 35, 91, 728, 1976, 5434, 135850, 380380, 1071980, 9111830, 25933670, 74096200, 637227320, 1832028545, 5280552865, 137294374490, 397431084050, 1152550143745, 10043651252635, 29217894553120, 85112997176480
Offset: 0
-
Table[Numerator[Binomial[-1/3,n] (-1)^n],{n,0,40}] (* Vincenzo Librandi, Jun 13 2012 *)
-
a(n)=prod(k=1,n,3*k-2)/n!*3^sum(k=1,n,valuation(k,3))
A142461
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 6.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 111, 111, 1, 1, 796, 2886, 796, 1, 1, 5597, 52642, 52642, 5597, 1, 1, 39210, 824271, 2000396, 824271, 39210, 1, 1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1, 1, 1921592, 165260188, 1483533704, 2930714950, 1483533704, 165260188, 1921592, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 111, 111, 1;
1, 796, 2886, 796, 1;
1, 5597, 52642, 52642, 5597, 1;
1, 39210, 824271, 2000396, 824271, 39210, 1;
1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460, ...
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142461[n_, k_]:= T[n, k, 6];
Table[A142461[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142461(n,k): return T(n,k,6)
flatten([[ A142461(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
Comments