cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 155 results. Next

A092261 Sum of unitary, squarefree divisors of n, including 1.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 1, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 4, 1, 42, 1, 8, 30, 72, 32, 1, 48, 54, 48, 1, 38, 60, 56, 6, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 3, 72, 8, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 1, 74, 114, 4, 20, 96, 168, 80
Offset: 1

Views

Author

Steven Finch, Feb 20 2004

Keywords

Comments

Unitary convolution of the sequence of n*mu^2(n) (absolute values of A055615) and A000012. - R. J. Mathar, May 30 2011

Crossrefs

Programs

  • Mathematica
    Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 79}] (* Michael De Vlieger, Mar 08 2015 *)
    f[p_, e_] := If[e==1, p+1, 1]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 79] (* Amiram Eldar, Mar 01 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 06 2015
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p^2*X^3 - p*X^2 - p^2*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
  • Scheme
    ;; This implementation utilizes the memoization-macro definec for which an implementation is available at http://oeis.org/wiki/Memoization#Scheme
    ;; The other functions, A020639, A067029 and A028234 can be found under the respective entries, and should likewise defined with definec:
    (definec (A092261 n) (if (= 1 n) 1 (* (+ 1 (if (> (A067029 n) 1) 0 (A020639 n))) (A092261 (A028234 n))))) ;; Antti Karttunen, Nov 25 2017
    

Formula

Multiplicative with a(p) = p+1 and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Feb 22 2004
From Álvar Ibeas, Mar 06 2015: (Start)
a(n) = a(A055231(n)) = A000203(A055231(n)).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(1-2s)).
(End)
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(A055231(n)).
a(n) = A000203(n) / A295294(n).
a(n) = A048250(n) / A295295(n) = A048250(n) / A048250(A057521(n)), where A057521(n) = A064549(A003557(n)).
(End)
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = Product_{p prime}(1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Jun 10 2020
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(2-3*s) - p^(1-2*s) - p^(2-2*s)). - Vaclav Kotesovec, Aug 20 2021
a(n) = Sum_{d|n, gcd(d,n/d)=1} d * mu(d)^2. - Wesley Ivan Hurt, May 26 2023

A325975 a(n) = gcd(A325977(n), A325978(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

See comments in A325979 and A325981.

Crossrefs

Programs

Formula

a(n) = gcd(A325977(n), A325978(n)).
a(n) = (1/2)*gcd(A034460(n)+A325313(n), A325814(n)+A325314(n)).

A344695 a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers (A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.

Crossrefs

Cf. A000203, A001615, A005117, A244963, A344696, A344697, A344702, A344703 (numbers k for which a(k^2) > 1).
Subsets of range: A008864, A065091 (conjectured).

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1,n],DivisorSum[n,MoebiusMu[n/#]^2*#&]],{n,100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    (Python 3.8+)
    from math import prod, gcd
    from sympy import primefactors, divisor_sigma
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist)
    def A344695(n): return gcd(A001615(n),divisor_sigma(n)) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = gcd(A000203(n), A001615(n)).
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
a(A007913(n)) | a(n).
a(n) = gcd(A000203(n), A244963(n)) = gcd(A001615(n), A244963(n)).
a(n) = A000203(n) / A344696(n).
a(n) = A001615(n) / A344697(n).

A206787 Sum of the odd squarefree divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 4, 6, 12, 4, 14, 8, 24, 1, 18, 4, 20, 6, 32, 12, 24, 4, 6, 14, 4, 8, 30, 24, 32, 1, 48, 18, 48, 4, 38, 20, 56, 6, 42, 32, 44, 12, 24, 24, 48, 4, 8, 6, 72, 14, 54, 4, 72, 8, 80, 30, 60, 24, 62, 32, 32, 1, 84, 48, 68, 18, 96, 48, 72, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2012

Keywords

Comments

a(A000079(n)) = 1; a(A057716(n)) > 1; a(A065119(n)) = 4; a(A086761(n)) = 6.
Inverse Mobius transform of 1, 0, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 15, 0, 17, 0, 19, 0, 21, 0, 23, 0, 0, 0, 0, 0, 29... - R. J. Mathar, Jul 12 2012

Crossrefs

Inverse Möbius transform of the absolute values of A349343.

Programs

  • Haskell
    a206787 = sum . filter odd . a206778_row
    
  • Magma
    [&+[d:d in Divisors(m)|IsOdd(d) and IsSquarefree(d)]:m in [1..72]]; // Marius A. Burtea, Aug 14 2019
    
  • Maple
    seq(add(d*mobius(2*d)^2, d in divisors(n)), n=1 .. 80); # Ridouane Oudra, Aug 14 2019
  • Mathematica
    a[n_] := DivisorSum[n, #*Boole[OddQ[#] && SquareFreeQ[#]]&]; Array[a, 80] (* Jean-François Alcover, Dec 05 2015 *)
    f[2, e_] := 1; f[p_, e_] := p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d)); \\ Michel Marcus, Sep 21 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A206787(n): return prod(1+(p if p>2 else 0) for p in primefactors(n)) # Chai Wah Wu, Oct 10 2024

Formula

a(n) = Sum_{k = 1..A034444(n)} (A206778(n,k) mod 2) * A206778(n,k).
a(n) = Sum_{d|n} d*mu(2*d)^2, where mu is the Möbius function (A008683). - Ridouane Oudra, Aug 14 2019
Multiplicative with a(2^e) = 1, and a(p^e) = p + 1 for p > 2. - Amiram Eldar, Sep 18 2020
Sum_{k=1..n} a(k) ~ (1/3) * n^2. - Amiram Eldar, Nov 17 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-2))*(2^s/(2^s+2)). - Amiram Eldar, Jan 03 2023
From Antti Karttunen, Nov 22 2023: (Start)
a(n) = A000203(A204455(n)) = A000593(A007947(n)) = A048250(n)/A010684(n-1). [From Sequence Machine]
a(n) = Sum_{d|n} abs(A349343(d)). [See R. J. Mathar's Jul 12 2012 comment above]
(End)
a(n) = Sum_{d divides n, d odd} d * mu(d)^2. - Peter Bala, Feb 01 2024

A206778 Irregular triangle in which n-th row lists squarefree divisors (A005117) of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 1, 3, 1, 2, 5, 10, 1, 11, 1, 2, 3, 6, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 1, 17, 1, 2, 3, 6, 1, 19, 1, 2, 5, 10, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 1, 5, 1, 2, 13, 26, 1, 3, 1, 2, 7, 14, 1, 29
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2012

Keywords

Examples

			Triangle begins:
.   1: [1]
.   2: [1, 2]
.   3: [1, 3]
.   4: [1, 2]
.   5: [1, 5]
.   6: [1, 2, 3, 6]
.   7: [1, 7]
.   8: [1, 2]
.   9: [1, 3]
.  10: [1, 2, 5, 10]
.  11: [1, 11]
.  12: [1, 2, 3, 6].
		

Crossrefs

Cf. A008966, A034444 (row lengths), A048250 (row sums), A206787; A077610.

Programs

  • Haskell
    a206778 n k = a206778_row n !! k
    a206778_row = filter ((== 1) . a008966) . a027750_row
    a206778_tabf = map a206778_row [1..]
    -- Reinhard Zumkeller, May 03 2013, Feb 12 2012
    
  • Maple
    A206778 := proc(n)
        local sqdvs ,nfac,d;
        sqdvs := {} ;
        nfac := ifactors(n)[2] ;
        for d in numtheory[divisors](n) do
            if issqrfree(d) then
                sqdvs := sqdvs union {d} ;
            end if;
        end do:
        sort(sqdvs) ;
    end proc:
    seq(op(A206778(n)),n=1..10) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    Flatten[Table[Select[Divisors[n],SquareFreeQ],{n,30}]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    row(n) = select(x -> issquarefree(x), divisors(n)); \\ Amiram Eldar, May 02 2025

A325981 Odd composites for which gcd(A325977(n), A325978(n)) is equal to abs(A325977(n)).

Original entry on oeis.org

45, 495, 585, 765, 855, 1305, 18837, 21525, 31635, 38295, 45315, 50445, 51255, 60435, 63495, 68085, 77265, 96615, 1403115, 2446353, 3411975, 3999465, 4091745, 4233537, 4287255, 4631319, 10813425, 10967085, 11490345, 15578199, 16143309, 16329645, 16633071, 17179515, 17311203, 17355915, 21159075, 21933975, 22579725
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Provided that A325977 and A325978 are never zero on same n, these are odd composite numbers n such that A325977(n) is not zero and divides A325978(n).
Based on the first 147 terms it seems that this sequence is a subsequence of A072357, that is each term has exactly one prime factor with exponent 2, with one or more other prime factors that are all unitary (i.e., each term satisfies A001222(x) - A001221(x) = 1). On the other hand, it has been proved that no odd perfect number, if such numbers exist at all, can have such a factorization (see A326137 and a link to P. P. Nielsen's paper there).
Nineteen initial terms factorize as:
45 = 3^2 * 5^1,
495 = 3^2 * 5^1 * 11^1,
585 = 3^2 * 5^1 * 13^1,
765 = 3^2 * 5^1 * 17^1,
855 = 3^2 * 5^1 * 19^1,
1305 = 3^2 * 5^1 * 29^1,
18837 = 3^2 * 7^1 * 13^1 * 23^1,
21525 = 3^1 * 5^2 * 7^1 * 41^1,
31635 = 3^2 * 5^1 * 19^1 * 37^1,
38295 = 3^2 * 5^1 * 23^1 * 37^1,
45315 = 3^2 * 5^1 * 19^1 * 53^1,
50445 = 3^2 * 5^1 * 19^1 * 59^1,
51255 = 3^2 * 5^1 * 17^1 * 67^1,
60435 = 3^2 * 5^1 * 17^1 * 79^1,
63495 = 3^2 * 5^1 * 17^1 * 83^1,
68085 = 3^2 * 5^1 * 17^1 * 89^1,
77265 = 3^2 * 5^1 * 17^1 * 101^1,
96615 = 3^2 * 5^1 * 19^1 * 113^1,
1403115 = 3^1 * 5^1 * 7^2 * 23^1 * 83^1,
and the 62nd term as a(62) = 2919199437 = 3^2 * 7^1 * 11^1 * 43^1 * 163^1 * 601^1.
If we select a subsequence of terms for which the quotient A325978(n)/A325977(n) is positive, then we are left with the following numbers: 495, 585, 31635, 38295, 45315, 51255, 60435, 63495, 1403115, 3999465, etc. which is a subsequence of A326070.

Crossrefs

Programs

A351265 Sum of the squares of the squarefree divisors of n.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 5, 10, 130, 122, 50, 170, 250, 260, 5, 290, 50, 362, 130, 500, 610, 530, 50, 26, 850, 10, 250, 842, 1300, 962, 5, 1220, 1450, 1300, 50, 1370, 1810, 1700, 130, 1682, 2500, 1850, 610, 260, 2650, 2210, 50, 50, 130, 2900, 850, 2810, 50, 3172, 250, 3620
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^2 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(6) = 50; a(6) = Sum_{d|6} d^2 * mu(d)^2 = 1^2*1 + 2^2*1 + 3^2*1 + 6^2*1 = 50.
		

Crossrefs

Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), this sequence (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^2); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
    Table[Total[Select[Divisors[n],SquareFreeQ]^2],{n,80}] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d), d^2)); \\ Michel Marcus, Feb 06 2022

Formula

a(n) = Sum_{d|n} d^2 * mu(d)^2.
a(n) = abs(A328639(n)).
G.f.: Sum_{k>=1} mu(k)^2 * k^2 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^2. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/(3*zeta(2)) = A253905 / 3 = 0.243587... . - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2s-4). - Michael Shamos, Aug 05 2023

A073185 Sum of cubefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 13, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 39, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68, 126, 96, 144, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2002

Keywords

Comments

Sum of divisors of the cubefree kernel of n (see first formula).

Examples

			The divisors of 56 are {1, 2, 4, 7, 8, 14, 28, 56}, 8=2^3 and 56=7*2^3 are not cubefree, therefore a(56) = 1 + 2 + 4 + 7 + 14 + 28 = 56.
		

Crossrefs

Programs

  • Haskell
    a073185 = sum . filter ((== 1) . a212793) . a027750_row
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    charFfree := proc(n,t) local f; for f in ifactors(n)[2] do if op(2,f) >= t then return 0 ; end if; end do: return 1 ; end proc:
    A073185 := proc(n) add( d*charFfree(d,3),d =numtheory[divisors](n) ); end proc: # R. J. Mathar, Apr 12 2011
  • Mathematica
    nn = 71;f[list_, i_] := list[[i]]; a =Table[If[Max[FactorInteger[n][[All, 2]]] <= 2, n, 0], {n, 1, nn}]; b = Table[1, {nn}]; Select[Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}], # > 0 &] (* Geoffrey Critzer, Mar 22 2015 *)
    f[p_, e_] := 1 + p + If[e > 1, p^2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f=factor(n)); for (i=1, #f~, p = f[i,1]; if ((e=f[i,2]) == 1, f[i,1] = 1+p, f[i,1] = 1+p+p^2); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Feb 06 2015

Formula

a(n) = A000203(A007948(n)).
a(n) <= A073183(n).
Multiplicative with a(p) = 1+p, a(p^e) = 1 + p + p^2, e>1. - Christian G. Bower, May 18 2005
a(n) = sum(A212793(A027750(n,k)) * A027750(n,k): k=1..A000005(n)). - Reinhard Zumkeller, May 27 2012
Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(3s-3). - R. J. Mathar, Apr 12 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*Zeta(3)). - Vaclav Kotesovec, Feb 01 2019

Extensions

Incorrect comment removed by Álvar Ibeas, Feb 06 2015

A323363 Dirichlet inverse of Dedekind's psi, A001615.

Original entry on oeis.org

1, -3, -4, 3, -6, 12, -8, -3, 4, 18, -12, -12, -14, 24, 24, 3, -18, -12, -20, -18, 32, 36, -24, 12, 6, 42, -4, -24, -30, -72, -32, -3, 48, 54, 48, 12, -38, 60, 56, 18, -42, -96, -44, -36, -24, 72, -48, -12, 8, -18, 72, -42, -54, 12, 72, 24, 80, 90, -60, 72, -62, 96, -32, 3, 84, -144, -68, -54, 96, -144, -72, -12, -74, 114, -24
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Crossrefs

Cf. A048250 (absolute values).

Programs

  • Mathematica
    psi[n_] := If[n == 1, 1, n Times @@ (1 + 1/FactorInteger[n][[All, 1]])];
    a[n_] := a[n] = If[n == 1, 1, -Sum[psi[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 75] (* Jean-François Alcover, Feb 15 2020 *)
    f[p_, e_] := (-1)^e * (p + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    A323363(n) = if(1==n,1,-sumdiv(n,d,if(dA001615(n/d)*A323363(d),0)));

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} psi(k) * A(x^k). - Ilya Gutkovskiy, Sep 04 2019
From Amiram Eldar, Oct 14 2020: (Start)
Multiplicative with a(p^e) = (-1)^e * (p+1).
a(n) = A008836(n) * A048250(n). (End)
Dirichlet g.f.: zeta(2*s)/(zeta(s-1)*zeta(s)). - Amiram Eldar, Dec 05 2022

A325977 a(n) = (1/2)*(A034460(n) + A325313(n)).

Original entry on oeis.org

0, 1, 1, 0, 1, 6, 1, -2, -2, 8, 1, 4, 1, 10, 9, -6, 1, 3, 1, 4, 11, 14, 1, 0, -9, 16, -11, 4, 1, 42, 1, -14, 15, 20, 13, -5, 1, 22, 17, -4, 1, 54, 1, 4, -3, 26, 1, -8, -20, -2, 21, 4, 1, -6, 17, -8, 23, 32, 1, 36, 1, 34, -7, -30, 19, 78, 1, 4, 27, 74, 1, -21, 1, 40, -11, 4, 19, 90, 1, -20, -38, 44, 1, 44, 23, 46, 33, -16, 1, 36, 21, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Question: Are n = 1, 4, 24, 240, 349440 (A325963) the only positions of zeros in this sequence?

Crossrefs

Programs

Formula

a(n) = (1/2)*(A034460(n) + A325313(n)).
a(n) = A325973(n) - n.
a(n) = A325978(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) - 1)/4 = 0.0921081944... . - Amiram Eldar, Feb 22 2024
Previous Showing 51-60 of 155 results. Next