cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A135663 a(n) = floor(sqrt(n) - n^(1/4)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n^(1/2)-n^(1/4)): n in [1..100]]; // Vincenzo Librandi, Feb 18 2013
  • Mathematica
    Table[Floor[n^(1/2) - n^(1/4)], {n, 100}] (* Vincenzo Librandi, Feb 18 2013 *)

Extensions

More terms from N. J. A. Sloane, Aug 08 2008
Offset changed from 0 to 1 by Vincenzo Librandi, Feb 18 2013

A135664 a(n) = ceiling(sqrt(n) - n^(1/5)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(n^(1/2) - n^(1/5)): n in [1..100]]; // Vincenzo Librandi, Feb 16 2013
  • Mathematica
    Table[Ceiling[n^(1/2) - n^(1/5)], {n, 100}] (* Vincenzo Librandi, Feb 16 2013 *)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008

A135665 a(n) = floor(sqrt(n) - n^(1/5)).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n^(1/2)-n^(1/5)): n in [1..100]]; // Vincenzo Librandi, Feb 18 2013
  • Mathematica
    Table[Floor[n^(1/2) - n^(1/5)], {n, 100}] (* Vincenzo Librandi, Feb 18 2013 *)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008

A211668 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 3.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p), p > 1, q > 1", the resulting g.f. is g(x) = 1/(1-x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1-x).

Examples

			a(n) = 1, 2, 3, 4, 5 for n = 3^1, 3^2, 3^4, 3^8, 3^16, i.e., n = 3, 9, 81, 6561, 43946721.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Sqrt, n, # >= 3 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    a(n) = {my(nbi = 0); if (n < 3, return (nbi)); r = n; nbi= 1; while ((nr = sqrt(r)) >= 3, nbi++; r = nr); return (nbi);} \\ Michel Marcus, Oct 23 2014
    
  • PARI
    A211668(n, c=0)={while(n>=3, n=sqrtint(n); c++); c} \\ M. F. Hasler, Dec 07 2018
    
  • Python
    from sympy import integer_log
    A048766=lambda n: integer_log(n,3)[0].bit_length() # Natalia L. Skirrow, May 17 2023

Formula

a(3^(2^n)) = a(3^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k >= 0} x^(3^(2^k))
= (x^3 + x^9 + x^81 + x^6561 + x^43946721 + ...)/(1 - x).

Extensions

Edited by Michel Marcus, Oct 23 2014 and M. F. Hasler, Dec 07 2018

A025455 a(n) is the number of partitions of n into 2 positive cubes.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation x^3 + y^3 = n with x >= y > 0. - Antti Karttunen, Aug 28 2017
The first term > 1 is a(1729) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Cf. A025456, A025468, A003108, A003325, A000578, A048766, A001235 (two or more ways, positions where a(n) > 1).
Cf. also A025426, A216284.

Programs

Formula

If a(n) > 0 then A025456(n + k^3) > 0 for k>0; a(A113958(n)) > 0; a(A003325(n)) > 0. - Reinhard Zumkeller, Jun 03 2006
a(n) >= A025468(n). - Antti Karttunen, Aug 28 2017
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Secondary offset added by Antti Karttunen, Aug 28 2017
Secondary offset corrected by Michel Marcus, Apr 23 2019

A255270 Integer part of fourth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2015

Keywords

Comments

n appears (n+1)^4 - n^4 times (A005917).

Crossrefs

Cf. A005917.
Cf. sequences of the type floor(n^(1/k)): A000196 (k=2), A048766 (k=3), this sequence (k=4), A178487 (k=5), A178489 (k=6).
Cf. A219009.

Programs

  • Magma
    [IsZero(n) select 0 else Iroot(n, 4): n in [0..100]];
    
  • Magma
    [Floor(n^(1/4)): n in [0..100]]; // Vincenzo Librandi, Feb 20 2015
    
  • Maple
    A255270 := proc(n)
        floor( n^(1/4)) ;
    end proc:
    seq(A255270(n),n=0..100) ; # R. J. Mathar, May 08 2020
  • Mathematica
    Floor[Range[0, 100]^(1/4)]
  • PARI
    vector(100, n, n--; floor(n^(1/4)))
    
  • PARI
    a(n) = sqrtnint(n, 4); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A255270(n): return integer_nthroot(n,4)[0] # Chai Wah Wu, Jun 06 2025
  • Sage
    [floor(n^(1/4)) for n in (0..100)]
    

Formula

a(n) = floor(n^(1/4)) = floor(sqrt(A000196(n))).
G.f.: Sum_{k>=1} x^(k^4)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A219009(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023

A025468 a(n) is the number of partitions of n into 2 distinct positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 with x > y > 0. The first value > 1 is a(1729) = 2. - Antti Karttunen, Aug 29 2017

Crossrefs

Programs

Formula

From Antti Karttunen, Aug 28-29 2017: (Start)
a(n) = A025465(n) - A025469(n).
a(n) <= A025455(n).
(End)

A178487 a(n) = floor(n^(1/5)): integer part of fifth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 09 2010

Keywords

Comments

Each term k appears (k+1)^5 - k^5 times consecutively (A022521). - Bernard Schott, Mar 07 2023

Crossrefs

Sequences a(n) = floor(n^(1/k)): A001477 (k=1), A000196 (k=2), A048766 (k=3), A255270 (k=4), this sequence (k= 5), A178489 (k=6), A057427 (k->oo).

Programs

  • Magma
    [n eq 0 select 0 else Iroot(n, 5): n in [0..110]]; // Bruno Berselli, Feb 20 2015
    
  • Maple
    seq(floor(n^(1/5)), n=0..100); # Ridouane Oudra, Feb 26 2023
  • Mathematica
    Floor[Range[0,120]^(1/5)] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    A178487(n)=floor(sqrtn(n+.5,5))
    
  • PARI
    a(n) = sqrtnint(n, 5); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A178487(n): return integer_nthroot(n,5)[0] # Chai Wah Wu, Jun 06 2025

Formula

G.f.: Sum_{k>=1} x^(k^5)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A253206(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023

A178489 a(n) = floor(n^(1/6)): integer part of sixth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 09 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Power[Range[0,110], (6)^-1]] (* Harvey P. Dale, Jul 18 2011 *)
  • PARI
    A178489(n)=floor(sqrtn(n+.5,6))
    
  • PARI
    a(n) = sqrtnint(n, 6); \\ Michel Marcus, Dec 22 2016

Formula

G.f.: Sum_{k>=1} x^(k^6)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016

A105209 Nearest integer to the cube root of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Pahikkala Jussi, Apr 13 2005

Keywords

Examples

			a(16) = 3 because 16^(1/3) = 2.519842...
		

References

  • Erwin Voellmy, Fünfstellige Logarithmen und Zahlentafeln, Orell Füssli Verlag, Zürich (1962).

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do printf(`%d,`,round(n^(1/3))) od: # James Sellers, Apr 21 2005
  • Mathematica
    Round[Surd[Range[110],3]] (* Harvey P. Dale, Feb 28 2015 *)
  • PARI
    a(n) = round(n^(1/3)); \\ Michel Marcus, Aug 19 2016
    
  • Python
    from sympy import integer_nthroot
    def A105209(n): return (m:=integer_nthroot(n,3)[0])+((n<<3)>=((m<<1)+1)**3) # Chai Wah Wu, Jun 06 2025

Formula

Sum_{n>=1} 1/a(n)^s = 3*zeta(s-2) + zeta(s)/4^s, for s > 3 (Seung-Jin Bang, 1992). - Amiram Eldar, Oct 31 2020

Extensions

More terms from James Sellers, Apr 21 2005
Previous Showing 11-20 of 48 results. Next