cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A336680 Exponential admirable numbers: numbers k such that there is a proper exponential divisor d of k such that esigma(k) - 2*d = 2*k, where esigma is the sum of exponential divisors function (A051377).

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 6300, 7056, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 40572, 42300, 42588, 47700
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper exponential divisors, with one of them taken with a minus sign.

Examples

			900 is a term since 900 = 30 + 60 + 90 + 150 - 180 + 300 + 450 is the sum of its proper exponential divisors with one of them, 180, taken with a minus sign.
		

Crossrefs

The exponential version of A111592.
Subsequence of A129575.
Similar sequences: A328328, A334972, A334974.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[50000], expAdmQ]

A357015 Nonsquarefree numbers whose sum of exponential divisors (A051377) is odd.

Original entry on oeis.org

81, 405, 567, 625, 891, 1053, 1377, 1539, 1863, 1875, 2349, 2401, 2511, 2835, 2997, 3321, 3483, 3807, 4293, 4375, 4455, 4779, 4941, 5265, 5427, 5751, 5913, 6237, 6399, 6723, 6875, 6885, 7203, 7209, 7371, 7695, 7857, 8125, 8181, 8343, 8667, 8829, 9153, 9315, 9639
Offset: 1

Views

Author

Amiram Eldar, Sep 09 2022

Keywords

Comments

The squarefree numbers are excluded from this sequence since the sum of the exponential divisors of any squarefree number k is A005117(k) = k, so the sum of the exponential divisors of any odd squarefree number (A056911) is odd.
Equivalently, odd nonsquarefree numbers whose exponents in their prime factorization are squares.
The asymptotic density of this sequence is A357017 - 4/Pi^2 = 0.0045127121... .

Examples

			81 = 3^4 is a term since it is not squarefree and A051377(81) = 93 is odd.
		

Crossrefs

Intersection of A013929 and A357014.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^4], ! SquareFreeQ[#] && OddQ[esigma[#]] &]

A236474 Numbers such that the sum of unitary divisors (A034448) is equal to the sum of exponential divisors (A051377).

Original entry on oeis.org

1, 20, 45, 320, 6615, 382200, 680890228200, 8169778639360, 27445575588992, 56626123593600, 1235050901504640
Offset: 1

Views

Author

Michel Marcus, Jan 29 2014

Keywords

Comments

Following numbers also belongs to this sequence, however their actual positions are unknown: 3640527948039840, 181552482521182080, 19736989888296320640, 108455561012908979640, 796015410768776072160, 4220107447484548287360, 39697147230528075361920, 202868762331595335655680, 668431747385354202124160, 124402428235930297906738935, 2456687209744634987008753664.

Examples

			The e-divisors of 20 are 10 and 20, sum 30, and its unitary divisors are 1, 4, 5, and 20, also sum 30.
For n=320=2^6*5 we have A051377(n)=(2^6+2^3+2^2+2)*5 = 390 and A034448(n)=(2^6+1)*(5+1) = 390 again.
		

Crossrefs

Extensions

More terms from Andrew Lelechenko, Feb 06 2014

A328132 Exponential (2,3)-perfect numbers: numbers m such that esigma(esigma(m)) = 3m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

300, 2100, 3300, 3900, 5100, 5700, 6900, 8700, 9300, 11100, 12100, 12300, 12900, 14100, 15900, 17700, 18300, 20100, 21300, 21900, 23100, 23700, 23760, 24900, 26700, 27300, 29100, 30300, 30900, 32100, 32700, 33900, 35700, 38100, 39300, 39900, 41100, 41700, 42900
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 53.

Crossrefs

The exponential version of A019281.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; espQ[n_] := esigma[esigma[n]] == 3n; Select[Range[50000], espQ]
  • PARI
    esigma(n) = {my(f = factor(n)); prod(k = 1, #f~, sumdiv(f[k, 2], d, f[k, 1]^d));}
    isok(k) = esigma(esigma(k)) == 3*k; \\ Amiram Eldar, Jan 09 2025

Formula

300 is in the sequence since esigma(300) = 540, and esigma(540) = 900 = 3*300.

A328133 Exponential (2,4)-perfect numbers: numbers m such that esigma(esigma(m)) = 4m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

540, 3780, 5940, 7020, 9180, 10260, 12420, 15660, 16740, 19980, 22140, 23220, 25380, 28620, 31860, 32940, 36180, 38340, 39420, 41580, 42660, 44820, 48060, 49140, 52380, 54540, 55620, 57780, 58860, 61020, 64260, 68580, 70740, 71820, 73980, 75060, 77220, 80460
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

Conjecturally, a subsequence of A083207 (tested for the first 659 terms of this sequence). - Ivan N. Ianakiev, Oct 05 2019

Examples

			540 is in the sequence since esigma(540) = 900, and esigma(900) = 2160 = 4*540.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 53.

Crossrefs

The exponential version of A019282.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; espQ[n_] := esigma[esigma[n]] == 4n; Select[Range[80000], espQ]
  • PARI
    esigma(n) = {my(f = factor(n)); prod(k = 1, #f~, sumdiv(f[k, 2], d, f[k, 1]^d));}
    isok(k) = esigma(esigma(k)) == 4*k; \\ Amiram Eldar, Jan 09 2025

A335396 Numbers m such that sigma(m)/esigma(m) > sigma(k)/esigma(k) for all k < m, where sigma(m) is the sum of divisors of m (A000203) and esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

1, 2, 6, 30, 96, 210, 480, 1920, 3360, 13440, 36960, 147840, 480480, 1921920, 8168160, 11975040, 32672640, 155675520, 620780160, 1401079680, 2490808320, 2646483840
Offset: 1

Views

Author

Amiram Eldar, Jun 05 2020

Keywords

Examples

			The ratio sigma(m)/esigma(m) for m = 1, 2, ..., 6 is 1, 3/2, 4/3, 7/6, 6/5, 2. The record values occur at m = 1, 2 and 6.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSigma[1,n]/( Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]); seq = {}; fm = 0; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A322446 The number of solutions to usigma(k) > esigma(k) below 10^n, where usigma(k) is the sum of unitary divisors of k (A034448) and esigma(k) is the sum of exponential divisors of k (A051377).

Original entry on oeis.org

5, 74, 776, 7770, 77794, 778337, 7784712, 77833385, 778307928, 7783494530
Offset: 1

Views

Author

Amiram Eldar, Aug 28 2019

Keywords

Comments

The value of the asymptotic density of these solutions was asked in the paper by Trudgian.

Examples

			Below 10^1 there are 5 numbers k with usigma(k) > esigma(k): 2, 3, 5, 6, and 7. Thus a(1) = 5.
		

Crossrefs

Programs

  • Mathematica
    aQ[1] = False; fun[p_, e_] := DivisorSum[e, p^# &]; aQ[n_] := Times @@ (1 + Power @@@ (f = FactorInteger[n])) > Times @@ (fun @@@ f); c = 0; k = 1; s = {}; Do[While[k < 10^n, If[aQ[k], c++]; k++]; AppendTo[s, c], {n, 1, 6}]; s

Formula

Lim_{n->oo} a(n)/10^n = 0.778...

A049419 a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
Wu gives a complicated Dirichlet g.f.
a(1) = 1 by convention. This is also required for a function to be multiplicative. - N. J. A. Sloane, Mar 03 2009
The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - R. J. Mathar, Jul 14 2014

Examples

			a(8)=2 because 2 and 2^3 are e-divisors of 8.
The sets of e-divisors start as:
  1:{1}
  2:{2}
  3:{3}
  4:{2, 4}
  5:{5}
  6:{6}
  7:{7}
  8:{2, 8}
  9:{3, 9}
  10:{10}
  11:{11}
  12:{6, 12}
  13:{13}
  14:{14}
  15:{15}
  16:{2, 4, 16}
  17:{17}
  18:{6, 18}
  19:{19}
  20:{10, 20}
  21:{21}
  22:{22}
  23:{23}
  24:{6, 24}
		

Crossrefs

Row lengths of A322791.
Cf. A049599, A061389, A051377 (sum of e-divisors).
Partial sums are in A099593.

Programs

  • GAP
    A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
    
  • Haskell
    a049419 = product . map (a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A049419 := proc(n)
        local a;
        a := 1 ;
        for pf in ifactors(n)[2] do
            a := a*numtheory[tau](op(2,pf)) ;
        end do:
        a ;
    end proc:
    seq(A049419(n),n=1..20) ; # R. J. Mathar, Jul 14 2014
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = vecprod(apply(numdiv, factor(n)[,2])); \\ Amiram Eldar, Mar 27 2023

Formula

Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023

Extensions

More terms from Jud McCranie, May 29 2000

A061742 a(n) is the square of the product of first n primes.

Original entry on oeis.org

1, 4, 36, 900, 44100, 5336100, 901800900, 260620460100, 94083986096100, 49770428644836900, 41856930490307832900, 40224510201185827416900, 55067354465423397733736100, 92568222856376731590410384100, 171158644061440576710668800200900
Offset: 0

Views

Author

Jason Earls, Jun 21 2001

Keywords

Comments

Squares of primorials (first definition, A002110).
Exponential superabundant numbers: numbers k with a record value of the exponential abundancy index, A051377(k)/k > A051377(m)/m for all m < k. - Amiram Eldar, Apr 13 2019
Numbers k with a record value of A056170(k), or least number k with A056170(k) = n. - Amiram Eldar, Apr 15 2019
Empirically, these are possibly the denominators for 1 - Sum_{k=1..n} (-1)^(k+1)/prime(k)^2. The numerators are listed in A136370. - Petros Hadjicostas, May 14 2020
a(n) = least k such that rad(k/rad(k)) = A002110(n). - David James Sycamore, Jun 10 2024

Examples

			a(4) = 2^2 * 3^2 * 5^2 * 7^2 = 44100.
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[NthPrime(j)^2: j in [1..n]]): n in [0..20]]; // G. C. Greubel, Apr 19 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, ithprime(n)^2*a(n-1)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, May 14 2020
  • Mathematica
    a[n_]:=Product[Prime[i]^2, {i, 1, n}]; (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)
  • PARI
    for(n=0,20,print1(prod(k=1,n, prime(k)^2), ", "))
    
  • PARI
    { n=-1; m=1; forprime (p=2, prime(101), write("b061742.txt", n++, " ", m^2); m*=p ) } \\ Harry J. Smith, Jul 27 2009
    
  • Sage
    [product(nth_prime(j)^2 for j in (1..n)) for n in (0..20)] # G. C. Greubel, Apr 19 2019

Formula

a(n) = Product_{j=1..n} A001248(j). - Alois P. Heinz, May 14 2020
a(n) = A228593(n) * A000040(n), for n>0. - Marco Zárate, Jun 11 2024

A054979 e-perfect numbers: numbers k such that the sum of the e-divisors (exponential divisors) of k equals 2*k.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4572, 4716
Offset: 1

Views

Author

Jud McCranie, May 29 2000

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
The number of e-divisors for n is A049419(n). - Jon Perry, Nov 13 2012
Conjecture: Every e-perfect number is divisible by 36, see A219016. - Jon Perry, Nov 13 2012

Examples

			The e-divisors of 36 are 2*3, 4*3, 2*9 and 4*9 and the sum of these = 2*36, so 36 is e-perfect.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B17, pp. 110-111.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 116-117.

Crossrefs

Programs

  • Maple
    for n from 1 do
        if A051377(n) = 2*n then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    ee[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[5000], ee[#] == 2 # &] (* T. D. Noe, Nov 14 2012 *)
  • PARI
    is(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d, f[i,1]^d))==2*n \\ Charles R Greathouse IV, Nov 22 2011

Formula

{n: A051377(n) = 2*n}. - R. J. Mathar, Oct 05 2017
Previous Showing 11-20 of 69 results. Next