cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A052382 Numbers without 0 in the decimal expansion, colloquial 'zeroless numbers'.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

The entries 1 to 79 match the corresponding subsequence of A043095, but then 81, 91-98, 100, 102, etc. are only in one of the two sequences. - R. J. Mathar, Oct 13 2008
Complement of A011540; A168046(a(n)) = 1; A054054(a(n)) > 0; A007602, A038186, A038618, A052041, A052043, and A052045 are subsequences. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011, Dec 01 2009
a(n) = n written in base 9 where zeros are not allowed but nines are. The nine distinct digits used are 1, 2, 3, ..., 9 instead of 0, 1, 2, ..., 8. To obtain this sequence from the "canonical" base 9 sequence with zeros allowed, just replace any 0 with a 9 and then subtract one from the group of digits situated on the left. For example, 9^3 = 729 (10) (in base 10) = 1000 (9) (in base 9) = 889 (9-{0}) (in base 9 without zeros) because 100 (9) = [9-1]9 = 89 (9-{0}) and thus 1000 (9) = [89-1]9 = 889 (9-{0}). - Robin Garcia, Jan 15 2014
From Hieronymus Fischer, May 28 2014: (Start)
Inversion: Given a term m, the index n such that a(n) = m can be calculated by A052382_inverse(m) = m - sum_{1<=j<=k} floor(m/10^j)*9^(j-1), where k := floor(log_10(m)) [see Prog section for an implementation in Smalltalk].
Example 1: A052382_inverse(137) = 137 - (floor(137/10) + floor(137/100)*9) = 137 - (13*1 + 1*9) = 137 - 22 = 115.
Example 2: A052382_inverse(4321) = 4321 - (floor(4321/10) + floor(4321/100)*9 + floor(4321/1000)*81) = 4321 - (432*1 + 43*9 + 4*81) = 4321 - (432 + 387 + 324) = 3178. (End)
The sum of the reciprocals of these numbers from a(1)=1 to infinity, called the Kempner series, is convergent towards a limit: 23.103447... whose decimal expansion is in A082839. - Bernard Schott, Feb 23 2019
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020

Examples

			For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012 and Jun 06 2012; edited by _M. F. Hasler_, Jan 13 2020
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

Cf. A004719, A052040, different from A067251.
Column k=9 of A214676.
Cf. A011540 (complement), A043489, A054054, A168046.
Cf. A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9).
Cf. A082839 (sum of reciprocals).
Cf. A038618 (subset of primes)

Programs

  • Haskell
    a052382 n = a052382_list !! (n-1)
    a052382_list = iterate f 1 where
    f x = 1 + if r < 9 then x else 10 * f x' where (x', r) = divMod x 10
    -- Reinhard Zumkeller, Mar 08 2015, Apr 07 2011
    
  • Magma
    [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local d, l, m; m:= n; l:= NULL;
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 11 2015
    is_zeroless := n -> not is(0 in convert(n, base, 10)):
    select(is_zeroless, [seq(1..113)]);  # Peter Luschny, Jun 20 2025
  • Mathematica
    A052382 = Select[Range[100], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 10 2011 *)
  • PARI
    select( {is_A052382(n)=n&&vecmin(digits(n))}, [0..111]) \\ actually: is_A052382 = (bool) A054054. - M. F. Hasler, Jan 23 2013, edited Jan 13 2020
    
  • PARI
    a(n) = for (w=0, oo, if (n >= 9^w, n -= 9^w, return ((10^w-1)/9 + fromdigits(digits(n, 9))))) \\ Rémy Sigrist, Jul 26 2017
    
  • PARI
    apply( {A052382(n,L=logint(n,9))=fromdigits(digits(n-9^L>>3,9))+10^L\9}, [1..100])
    next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n. Used in A038618.
    ( {A052382_vec(n,M=1)=M--;vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
    \\ See OEIS Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
    
  • Python
    A052382 = [n for n in range(1,10**5) if not str(n).count('0')]
    # Chai Wah Wu, Aug 26 2014
    
  • Python
    from sympy import integer_log
    def A052382(n):
        m = integer_log(k:=(n<<3)+1,9)[0]
        return sum((1+(k-9**m)//(9**j<<3)%9)*10**j for j in range(m)) # Chai Wah Wu, Jun 27 2025
  • Smalltalk
    A052382
    "Answers the n-th term of A052382, where n is the receiver."
    ^self zerofree: 10
    A052382_inverse
    "Answers that index n which satisfy A052382(n) = m, where m is the receiver.”
    ^self zerofree_inverse: 10
    zerofree: base
    "Answers the n-th zerofree number in base base, where n is the receiver. Valid for base > 2.
    Usage: n zerofree: b [b = 10 for this sequence]
    Answer: a(n)"
    | n m s c bi ci d |
    n := self.
    c := base - 1.
    m := (base - 2) * n + 1 integerFloorLog: c.
    d := n - (((c raisedToInteger: m) - 1)//(base - 2)).
    bi := 1.
    ci := 1.
    s := 0.
    1 to: m
    do:
    [:i |
    s := (d // ci \\ c + 1) * bi + s.
    bi := base * bi.
    ci := c * ci].
    ^s
    zerofree_inverse: base
    "Answers the index n such that the n-th zerofree number in base base is = m, where m is the receiver. Valid for base > 2.
    Usage: m zerofree_inverse: b [b = 10 for this sequence]
    Answer: n"
    | m p q s |
    m := self.
    s := 0.
    p := base.
    q := 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := base * p.
    q := (base - 1) * q].
    ^m - s
    "by Hieronymus Fischer, May 28 2014"
    
  • sh
    seq 0 1000 | grep -v 0; # Joerg Arndt, May 29 2011
    

Formula

a(n+1) = f(a(n)) with f(x) = 1 + if x mod 10 < 9 then x else 10*f([x/10]). - Reinhard Zumkeller, Nov 15 2009
From Hieronymus Fischer, Apr 30, May 30, Jun 08 2012, Feb 17 2019: (Start)
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 9)*10^j, where m = floor(log_9(8*n + 1)), b(j) = floor((8*n + 1 - 9^m)/(8*9^j)).
Also: a(n) = Sum_{j=0..m-1} (1 + A010878(b(j)))*10^j.
a(9*n + k) = 10*a(n) + k, k=1..9.
Special values:
a(k*(9^n - 1)/8) = k*(10^n - 1)/9, k=1..9.
a((17*9^n - 9)/8) = 2*10^n - 1.
a((9^n - 1)/8 - 1) = 10^(n-1) - 1, n > 1.
Inequalities:
a(n) <= (1/9)*((8*n+1)^(1/log_10(9)) - 1), equality holds for n=(9^k-1)/8, k>0.
a(n) > (1/10)*((8*n+1)^(1/log_10(9)) - 1), n > 0.
Lower and upper limits:
lim inf a(n)/10^log_9(8*n) = 1/10, for n -> infinity.
lim inf a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/10, for n -> infinity.
lim sup a(n)/10^log_9(8*n) = 1/9, for n -> infinity.
lim sup a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/9, for n -> infinity.
G.f.: g(x) = (x^(1/8)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(9/8)*(1 - 10z(j)^9 + 9z(j)^10)/((1-z(j))(1-z(j)^9)), where z(j) = x^9^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 10(x^9^j)^9 + 9(x^9^j)^10)*x^9^j*f_j(x)/(1-x^9^j), where f_j(x) = 10^j*x^((9^j-1)/8)/(1-(x^9^j)^9). Here, the f_j obey the recurrence f_0(x) = 1/(1-x^9), f_(j+1)(x) = 10x*f_j(x^9).
Also: g(x) = (1/(1-x))*((Sum{k=0..8} h_(9,k)(x)) - 9*h_(9,9)(x)), where h_(9,k)(x) = Sum_{j>=0} 10^j*x^((9^(j+1)-1)/8)*x^(k*9^j)/(1-x^9^(j+1)).
Generic formulas for analogous sequences with numbers expressed in base p and only using the digits 1, 2, 3, ... d, where 1 < d < p:
a(n) = Sum_{j=0..m-1} (1 + b(j) mod d)*p^j, where m = floor(log_d((d-1)*n+1)), b(j) = floor(((d-1)*n+1-d^m)/((d-1)*d^j)).
Special values:
a(k*(d^n-1)/(d-1)) = k*(10^n-1)/9, k=1..d.
a(d*((2d-1)*d^(n-1)-1)/(d-1)) = ((d+9)*10^n-d)/9 = 10^n + d*(10^n-1)/9.
a((d^n-1)/(d-1)-1) = d*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_d((d-1)*n+1)-1)/9, equality holds for n = (d^k-1)/(d-1), k > 0.
a(n) > (d/10)*(10^log_d((d-1)*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_d((d-1)*n) = d/90, for n -> infinity.
lim sup a(n)/10^log_d((d-1)*n) = 1/9, for n -> infinity.
G.f.: g(x) = (1/(1-x)) Sum_{j>=0} (1 - (d+1)(x^d^j)^d + d(x^d^j)^(d+1))*x^d^j*f_j(x)/(1-x^d^j), where f_j(x) = p^j*x^((d^j-1)/(d-1))/(1-(x^d^j)^d). Here, the f_j obey the recursion f_0(x) = 1/(1-x^d), f_(j+1)(x) = px*f_j(x^d).
(End)
A052382 = { n | A054054(n) > 0 }. - M. F. Hasler, Jan 23 2013
From Hieronymus Fischer, Feb 20 2019: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.696899720...
Sum_{n>=1} 1/a(n)^2 = 1.6269683705819...
Sum_{n>=1} 1/a(n) = 23.1034479... = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
(End)

Extensions

Typos in formula section corrected by Hieronymus Fischer, May 30 2012
Name clarified by Peter Luschny, Jun 20 2025

A075415 Squares of A002280 or numbers (666...6)^2.

Original entry on oeis.org

0, 36, 4356, 443556, 44435556, 4444355556, 444443555556, 44444435555556, 4444444355555556, 444444443555555556, 44444444435555555556, 4444444444355555555556, 444444444443555555555556, 44444444444435555555555556, 4444444444444355555555555556, 444444444444443555555555555556
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 66^2 = 4356.
From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 36 = 9 * 4;
n=2: ................... 4356 = 99 * 44;
n=3: ................. 443556 = 999 * 444;
n=4: ............... 44435556 = 9999 * 4444;
n=5: ............. 4444355556 = 99999 * 44444;
n=6: ........... 444443555556 = 999999 * 444444;
n=7: ......... 44444435555556 = 9999999 * 4444444;
n=8: ....... 4444444355555556 = 99999999 * 44444444;
n=9: ..... 444444443555555556 = 999999999 * 444444444. (End)
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,6]]^2,{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{0,36,4356},20] (* Harvey P. Dale, May 20 2021 *)

Formula

a(n) = A002280(n)^2 = (6*A002275(n))^2 = 36*A002275(n)^2.
a(n) = (6*(10^n-1)/9)^2 = (4/9)*(10^(2*n) - 2*10^n + 1), which is n-1 4's, followed by a 3, n-1 5's and a 6. - Ignacio Larrosa Cañestro, Feb 26 2005
From Reinhard Zumkeller, May 31 2010: (Start)
a(n) = ((A002278(n-1)*10 + 3)*10^(n-1) + A002279(n-1))*10 + 6 for n>0.
a(n) = A002283(n)*A002278(n). (End)
G.f.: 36*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Arkadiusz Wesolowski, Dec 26 2011
From Elmo R. Oliveira, Jul 27 2025: (Start)
E.g.f.: 4*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 36*A002477(n). (End)

Extensions

Edited by Alois P. Heinz, Aug 21 2019 (merged with A102794, submitted by Richard C. Schroeppel, Feb 26 2005)

A052040 Numbers whose square is zeroless.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite, since 33...334^2 = 11...11155...556, for example. This answers an open problem stated in HAKMEM. - Karl W. Heuer, Aug 19 2015

Examples

			From _Jon E. Schoenfield_, Aug 16 2021: (Start)
31 is a term: 31^2 = 961 has no 0's among its digits.
32 is not a term, because 32^2 = 1024. (End)
		

Crossrefs

Programs

A052043 Squares of primes lacking the digit zero in their decimal expansion.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 3481, 3721, 4489, 5329, 6241, 6889, 7921, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 24649, 26569, 27889, 29929, 32761, 36481, 37249, 44521, 49729, 51529, 52441, 54289
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

Intersection of A052382 and A001248; A168046(a(n))*A064911(a(n))*A010052(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]]^2,DigitCount[#,10,0]==0&] (* Harvey P. Dale, Mar 18 2012 *)
  • PARI
    is(n)=my(d=digits(n));vecsort(d)[1]&&issquare(n,&n)&&isprime(n) \\ Charles R Greathouse IV, Jun 05 2013

Formula

a(n) = A052042(n)^2. - R. J. Mathar, Jul 23 2025

A102807 a(n) is the square of one plus the number consisting of n 3's.

Original entry on oeis.org

1, 16, 1156, 111556, 11115556, 1111155556, 111111555556, 11111115555556, 1111111155555556, 111111111555555556, 11111111115555555556, 1111111111155555555556, 111111111111555555555556, 11111111111115555555555556, 1111111111111155555555555556, 111111111111111555555555555556
Offset: 0

Views

Author

Ron Knott, Feb 27 2005

Keywords

Comments

Old name was: The number (333...334)^2.
An infinite sequence of squares with no zeros in base 10.
a(n) = A104265(2n) for n > 0. - Chai Wah Wu, Mar 24 2020

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 31 at p. 61.
  • Italo Ghersi, Matematica dilettevole e curiosa, pp. 111-112, Hoepli, Milano, 1967. [Vincenzo Librandi, Dec 31 2008]

Crossrefs

Programs

  • Maple
    a:= n-> (1+parse(cat(0, 3$n)))^2:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    Table[(10^n + 2)^2/9, {n, 0, 20}] (* Paolo Xausa, Jun 26 2024 *)

Formula

From R. J. Mathar, Jan 06 2009: (Start)
a(n) = (100^n + 4*10^n + 4)/9.
G.f.: (1 - 95*x + 490*x^2)/((1-x)*(100*x-1)*(10*x-1)). (End)
E.g.f.: exp(x)*(4 + 4*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024

Extensions

New name from Alois P. Heinz, Sep 03 2018

A052042 Primes that lack the digit zero in the decimal expansion of their squares.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 59, 61, 67, 73, 79, 83, 89, 107, 109, 113, 127, 131, 137, 139, 157, 163, 167, 173, 181, 191, 193, 211, 223, 227, 229, 233, 239, 263, 269, 271, 277, 281, 293, 307, 311, 313, 337, 359, 367, 373, 379, 383, 389, 409, 419, 421, 431
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			The primes 47, 53 and 71 are not in the sequence because 47^2=2209, 53^2=2809 and 71^2=5041 contain zeros in their decimal representation.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := DigitCount[n^2][[-1]] == 0; Select[Prime@ Range@ 80, fQ] (* Robert G. Wilson v, Aug 22 2012 *)
  • PARI
    {p=2;for(k=1,10^2,if(vecmin(digits(p^2))>0,
    print1(p", "));p=nextprime(1+p))}\\ Zak Seidov, Dec 24 2014

Formula

a(n) = sqrt(A052043(n)). - Zak Seidov, Dec 27 2014

A051833 Primes of form (2*10^(5n) - 10^(4n) + 2*10^(3n) + 10^(2n) + 10^n + 1)/3.

Original entry on oeis.org

2, 64037, 66666663333334000000033333336666667
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 11 1999

Keywords

Comments

The Baxter-Hickerson function provides a number whose cube lacks zeros.
Next term has 665 digits and is in b-file.

Crossrefs

Programs

  • Mathematica
    Select[Table[(2*10^(5*n) - 10^(4*n) + 2*10^(3*n) + 10^(2*n) + 10^n + 1)/3, {n, 0, 150}], PrimeQ] (* Amiram Eldar, Jul 18 2025 *)

Formula

a(n) = A052427(A051832(n)). - Amiram Eldar, Jul 18 2025

A104264 Number of n-digit squares with no zero digits.

Original entry on oeis.org

3, 6, 19, 44, 136, 376, 1061, 2985, 8431, 24009, 67983, 193359, 549697, 1563545, 4446173, 12650545, 35999714, 102439796, 291532841, 829634988, 2360947327, 6719171580, 19122499510, 54423038535, 154888366195
Offset: 1

Views

Author

Reinhard Zumkeller and Ron Knott, Feb 26 2005

Keywords

Comments

Comments from David W. Wilson, Feb 26 2005: (Start)
"There are approximately s(d) = (10^d)^(1/2) - (10^(d-1))^(1/2) d-digit squares. A random d-digit number has the probability p(d) = (9/10)^(d-1) of being zeroless (exponent d-1 as opposed to d because the first digit is not zero). So we expect p(d)s(d) zeroless d-digit squares.
"For d = 1 through 12, we get (truncating): 1, 5, 15, 44, 127, 363, 1034, 2943, 8377, 23841, 67854, 193117, ... The elements grow approximately geometrically with limit ratio (9/10)*10^(1/2) = 2.846+.
"The same naive estimate can easily be generalize to k-th powers, giving the estimate s(d) = (10^d)^(1/k) - (10^(d-1))^(1/k) for d-digit k-th powers. p(d) remains the same. The resulting estimates have ratio (9/10)*10^(1/k).
"We should expect an infinite number of zeroless k-th powers when this ratio is >= 1, which it is for k <= 21. For k >= 22, the ratio is < 1 and we should expect a finite number of zeroless k-th powers." (End)

Examples

			a(3) = #{121, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 961} = 19.
		

Crossrefs

Programs

  • Python
    def aupton(terms):
      c, k, kk = [0 for i in range(terms)], 1, 1
      while kk < 10**terms:
        s = str(kk)
        c[len(s)-1], k, kk = c[len(s)-1] + (s.count('0')==0), k+1, kk + 2*k + 1
      return c
    print(aupton(14)) # Michael S. Branicky, Mar 06 2021

Extensions

a(14)-a(18) from Donovan Johnson, Nov 05 2009
a(19)-a(21) from Donovan Johnson, Mar 23 2011
a(22)-a(25) from Donovan Johnson, Jan 29 2013

A051750 Primes whose cubes lack zeros.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 53, 61, 71, 83, 97, 113, 137, 139, 151, 157, 167, 173, 179, 181, 191, 197, 211, 233, 239, 241, 251, 257, 263, 277, 283, 293, 307, 331, 337, 347, 353, 359, 373, 379, 383, 389, 409, 421, 433, 457, 461, 463, 499, 503
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 07 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]],FreeQ[IntegerDigits[#^3],0]&] (* Harvey P. Dale, Jan 06 2017 *)
  • PARI
    isok(n) = isprime(n) && vecmin(digits(n^3)); \\ Michel Marcus, Jan 06 2014

Extensions

More terms from Michel Marcus, Jan 06 2014

A051832 Numbers k such that (2*10^(5*k) - 10^(4*k) + 2*10^(3*k) + 10^(2*k) + 10^k + 1)/3 is prime.

Original entry on oeis.org

0, 1, 7, 133
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 11 1999

Keywords

Comments

The Baxter-Hickerson function provides a number whose cube lacks zeros.
The next term is > 4400. - Jason Earls, Sep 10 2005
The next term is > 20000 (found using pfgw64). - Patrick De Geest, Jul 22 2012

Crossrefs

Programs

  • Maple
    f := n->(2*10^(5*n) - 10^(4*n) + 2*10^(3*n) + 10^(2*n) + 10^n + 1)/3;
  • PARI
    is(n)=isprime((2*10^(5*n)-10^(4*n)+2*10^(3*n)+10^(2*n)+10^n+1)/3) \\ Charles R Greathouse IV, Feb 17 2017
Showing 1-10 of 22 results. Next