A206703
Triangular array read by rows. T(n,k) is the number of partial permutations (injective partial functions) of {1,2,...,n} that have exactly k elements in a cycle. The k elements are not necessarily in the same cycle. A fixed point is considered to be in a cycle.
Original entry on oeis.org
1, 1, 1, 3, 2, 2, 13, 9, 6, 6, 73, 52, 36, 24, 24, 501, 365, 260, 180, 120, 120, 4051, 3006, 2190, 1560, 1080, 720, 720, 37633, 28357, 21042, 15330, 10920, 7560, 5040, 5040, 394353, 301064, 226856, 168336, 122640, 87360, 60480, 40320, 40320
Offset: 0
1;
1, 1;
3, 2, 2;
13, 9, 6, 6;
73, 52, 36, 24, 24;
501, 365, 260, 180, 120, 120;
4051, 3006, 2190, 1560, 1080, 720, 720;
...
- Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
- Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
-
b:= proc(n) option remember; `if`(n=0, 1, add((p-> p+x^j*
coeff(p, x, 0))(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 19 2022
-
nn = 7; a = 1/(1 - x); ay = 1/(1 - y x); f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[a x] ay, {x, 0, nn}], {x, y}]] // Flatten
A216294
Triangular array read by rows: T(n,k) is the number of partial permutations of {1,2,...,n} that have exactly k cycles, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 13, 14, 6, 1, 73, 84, 41, 10, 1, 501, 609, 325, 95, 15, 1, 4051, 5155, 2944, 965, 190, 21, 1, 37633, 49790, 30023, 10689, 2415, 343, 28, 1, 394353, 539616, 340402, 129220, 32179, 5348, 574, 36, 1, 4596553, 6478521, 4246842, 1698374, 455511, 84567, 10794, 906, 45, 1
Offset: 0
1;
1, 1;
3, 3, 1;
13, 14, 6, 1;
73, 84, 41, 10, 1;
501, 609, 325, 95, 15, 1;
-
gf := exp(x / (1 - x)) / (1 - x)^y:
serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
seq(print(seq(n!*coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 23 2023
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[ x/(1-x)]/(1-x)^y,{x,0,nn}],{x,y}]]//Flatten
A288950
Number of relaxed compacted binary trees of right height at most one with empty initial and final sequence on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 140, 1575, 20790, 315315, 5405400, 103378275, 2182430250, 50414138775, 1264936572900, 34258698849375, 996137551158750, 30951416768146875, 1023460181133390000, 35885072600989486875, 1329858572860198631250, 51938365373373313209375
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o-o
| | | |
o o-o-o o-o o.
For n=0 the a(0)=1 solution is L.
For n=1 we have a(1)=0 because we need nodes on level 0 and level 1.
For n=2 the a(2)=1 solution is
L-o
|
o
and the pointers of the node on level 1 both point to the leaf.
For n=3 the a(3)=2 solutions have the structure
L-o
|
o-o
where the pointers of the last node have to point to the leaf, but the pointer of the next node has 2 choices: the leaf of the previous node.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
Cf.
A000032,
A000246,
A001879,
A051577,
A177145,
A213527,
A288950,
A288952,
A288953,
A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
-
terms = 21; (z + (1 - z)/3*(2 - z + (1 - 2z)^(-1/2)) + O[z]^terms // CoefficientList[#, z] &) Range[0, terms-1]! (* Jean-François Alcover, Dec 04 2018 *)
A288952
Number of relaxed compacted binary trees of right height at most one with empty sequences between branch nodes on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 92, 835, 8322, 99169, 1325960, 19966329, 332259290, 6070777999, 120694673748, 2594992240555, 59986047422378, 1483663965460545, 39095051587497488, 1093394763005554801, 32347902448449172530, 1009325655965539561231, 33125674098690460236620
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
-
a := [1,0];; for n in [3..10^2] do a[n] := (n-2)*a[n-1] + (n-2)^2*a[n-2]; od; a; # Muniru A Asiru, Jan 26 2018
-
a:=proc(n) option remember: if n=0 then 1 elif n=1 then 0 elif n>=2 then (n-1)*procname(n-1)-(n-1)^2*procname(n-2) fi; end:
seq(a(n),n=0..100); # Muniru A Asiru, Jan 26 2018
-
Fold[Append[#1, (#2 - 1) Last[#1] + #1[[#2 - 1]] (#2 - 1)^2] &, {1, 0}, Range[2, 21]] (* Michael De Vlieger, Jan 28 2018 *)
A293985
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-x))/(1-x)^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 13, 34, 73, 1, 5, 21, 73, 209, 501, 1, 6, 31, 136, 501, 1546, 4051, 1, 7, 43, 229, 1045, 4051, 13327, 37633, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 394353, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 4596553
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ... A000012;
1, 2, 3, 4, 5, ... A000027;
3, 7, 13, 21, 31, ... A002061;
13, 34, 73, 136, 229, ... A135859;
73, 209, 501, 1045, 1961, ...
501, 1546, 4051, 9276, 19081, ...
Antidiagonal rows begin as:
1;
1, 1;
1, 2, 3;
1, 3, 7, 13;
1, 4, 13, 34, 73;
1, 5, 21, 73, 209, 501; - _G. C. Greubel_, Mar 09 2021
-
function t(n,k)
if n eq 0 then return 1;
else return Factorial(n-1)*(&+[(j+k)*t(n-j,k)/Factorial(n-j): j in [1..n]]);
end if; return t;
end function;
[t(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
-
t[n_, k_]:= t[n, k]= If[n==0, 1, (n-1)!*Sum[(j+k)*t[n-j,k]/(n-j)!, {j,n}]];
T[n_,k_]:= t[k,n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
-
@CachedFunction
def t(n,k): return 1 if n==0 else factorial(n-1)*sum( (j+k)*t(n-j,k)/factorial(n-j) for j in (1..n) )
def T(n,k): return t(k,n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
A351767
Expansion of e.g.f. exp( x/(1-x)^3 ) / (1-x)^3.
Original entry on oeis.org
1, 4, 25, 214, 2293, 29176, 427189, 7049890, 129178249, 2597880268, 56815155121, 1341068392654, 33951269718205, 917020113259264, 26305693331946253, 798293630021120986, 25540244079135784849, 858854698277997113620, 30274382852181639467209
Offset: 0
-
Table[n!*Sum[Binomial[n + 2*k + 2, n - k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)^3))
-
a(n) = n! * sum(k=0, n, binomial(n+2*k+2,n-k)/k!); \\ Winston de Greef, Mar 18 2023
A059114
Triangle T(n,m)= Sum_{i=0..n} L'(n,i)*Product_{j=1..m} (i-j+1), read by rows.
Original entry on oeis.org
1, 1, 1, 3, 4, 2, 13, 21, 18, 6, 73, 136, 156, 96, 24, 501, 1045, 1460, 1260, 600, 120, 4051, 9276, 15030, 16320, 11160, 4320, 720, 37633, 93289, 170142, 219450, 192360, 108360, 35280, 5040, 394353, 1047376, 2107448, 3116736, 3294480, 2405760, 1149120, 322560, 40320
Offset: 0
Triangle begins as:
1;
1, 1;
3, 4, 2;
13, 21, 18, 6;
73, 136, 156, 96, 24;
501, 1045, 1460, 1260, 600, 120;
...;
E.g.f. for T(n, 2) = (x/(1-x))^2*e^(x/(x-1)) = x^2 + 3*x^3 + 13/2*x^4 + 73/6*x^5 + 167/8*x^6 + 4051/120*x^7 + ...
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n-k, k-1), -1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
-
Table[n!*LaguerreL[n-k, k-1, -1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
-
T(n, k) = n! * pollaguerre(n-k, k-1, -1); \\ Michel Marcus, Feb 23 2021
-
flatten([[factorial(n)*gen_laguerre(n-k, k-1, -1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
A288953
Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except after the last branch node on level 0.
Original entry on oeis.org
1, 1, 3, 10, 51, 280, 1995, 15120, 138075, 1330560, 14812875, 172972800, 2271359475, 31135104000, 471038042475, 7410154752000, 126906349444875, 2252687044608000, 43078308695296875, 851515702861824000, 17984171447178811875, 391697223316439040000
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o
| | | | |
o o o o o.
For n=0 the a(0)=1 solution is L.
For n=1 the a(1)=1 solution is L-o.
For n=2 the a(2)=3 solutions are
L-o-o L-o
|
o
2 + 1 solutions of this shape with pointers.
Cf.
A288954 (variation with additional initial sequence).
Cf.
A177145 (variation without final sequence).
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
A123525
Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.
Original entry on oeis.org
2, 14, 102, 836, 7730, 79962, 916454, 11533832, 158149026, 2346622310, 37458934502, 640013453004, 11652216012242, 225169809833906, 4602407562991590, 99194703240441872
Offset: 1
-
Rest[With[{nmax = 50}, CoefficientList[Series[(1/(1 - x)^2)*Exp[x/(1 - x)]*LaguerreL[1, 1/(x - 1)]*x, {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Oct 14 2017 *)
A129833
a(n) = Sum_{k = 0..n } binomial(n + 1, k + 1)*binomial(n, k)*k!.
Original entry on oeis.org
1, 3, 11, 52, 309, 2221, 18703, 180216, 1952457, 23466223, 309577971, 4444537868, 68948023741, 1148825560377, 20455144724407, 387479309532976, 7778881684953873, 164942847995071611, 3682885668837002587, 86359724102207331876, 2121535102985378053061, 54482075844410029721893, 1459677302947807284662751
Offset: 0
-
[(&+[Binomial(n,k)^2*((n+1)*Factorial(k)/(k+1)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 10 2021
-
A129833 := proc(n)
add(A176120(n,k),k=0..n) ;
end proc: # R. J. Mathar, Feb 28 2015
-
a[n_]:= Sum[Binomial[n+1, k+1]*Binomial[n, k]*k!, {k,0,n}]; Table[a[n], {n,0,30}]
-
a(n) = sum(k= 0, n, binomial(n+1, k+1)*binomial(n, k)*k!); \\ Michel Marcus, Mar 10 2021
-
[sum( binomial(n,k)^2*((n+1)*factorial(k)/(k+1)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 10 2021
Comments