A326222 Number of non-Hamiltonian unlabeled n-vertex digraphs (without loops).
1, 0, 2, 12, 157, 5883, 696803, 255954536
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640. n = 2: HilbertMatrix[n,n] 1/1 1/2 1/2 1/3 so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12. The n X n Hilbert matrix begins: 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ... 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ... 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ... 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ... 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ... 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >; [A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
a:= n-> mul((n+i)!/i!, i=0..n-1): seq(a(n), n=0..10); # Alois P. Heinz, Jul 23 2012
Table[Product[(i+j-1),{i,1,n},{j,1,n}], {n,1,10}] (* Alexander Adamchuk, Apr 12 2006 *) Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n,0,12}] (* G. C. Greubel, Apr 21 2021 *)
a = lambda n: prod(rising_factorial(k,n) for k in (1..n)) print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015
Triangle begins: 1 1 2 1 1 6 15 20 15 6 1 1 12 66 220 495 792 924 792 495 220 66 12 1
Table[CoefficientList[Series[(1+x)^(2*Binomial[n,2]), {x,0,2*Binomial[n,2]}], x], {n,6}] (* Geoffrey Critzer, Nov 12 2011 *)
T(n,k)={binomial(n*(n-1), k)} {for(n=1, 5, for(k=0, n*(n-1), print1(T(n,k), ", ")); print)} \\ Andrew Howroyd, Apr 19 2020
a(n) = 7^binomial(n,2) \\ Charles R Greathouse IV, Jan 17 2012
1 3 1 54 9 1 3834 243 18 1 1027080 20790 675 30 1
T:= (n, k)-> coeff(series(log(add(2^(i^2-i) *x^i/i!, i=0..n))^k /k!, x, n+1), x, n) *n!: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 01 2011
a= Sum[4^Binomial[n,2]x^n/n!,{n,0,10}]; Transpose[Map[Drop[#, 1] &,Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid
# uses[bell_matrix from A264428, A003027] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: A003027(n+1), 10) # Peter Luschny, Jan 18 2016
[2^(3*Binomial(n,2)): n in [0..10]]; // G. C. Greubel, Feb 05 2018
Table[2^(3*Binomial[n,2]),{n,0,10}] (* Geoffrey Critzer, Nov 10 2011 *)
a(n)=8^binomial(n,2) \\ Charles R Greathouse IV, Jan 17 2012
seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *) FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016
[n lt 2 select 1 else (&*[4^j +1: j in [1..n-1]]): n in [0..15]]; // G. C. Greubel, Feb 21 2021
Table[Product[4^k + 1, {k, 1, n - 1}], {n, 0, 13}] Join[{1}, Table[4^(Binomial[n,2])*QPochhammer[-1/4, 1/4, n-1], {n,15}]] (* G. C. Greubel, Feb 21 2021 *)
a(n) = prod(k=1, n-1, 4^k + 1); \\ Michel Marcus, Jun 06 2020
from sage.combinat.q_analogues import q_pochhammer [1]+[4^(binomial(n,2))*q_pochhammer(n-1, -1/4, 1/4) for n in (1..15)] # G. C. Greubel, Feb 21 2021
1, 1, 3, 1, 21, 42, 1, 315, 1260, 2520, 1, 6975, 104160, 312480, 624960
nn = 8; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; l = Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; g[u_, v_, deg_, partitions_] := Total[Map[v^If[# == {}, 0, Max[#]] u^(deg Total[#])/aut[deg, #] &, partitions]]; Map[Select[#, # > 0 &] &, Drop[Table[\[Gamma][n, q], {n, 0, nn}] CoefficientList[ Series[g[u, v, 1, l], {u, 0, nn}], {u, v}], 1]] // Grid
Comments