cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 508 results. Next

A055640 Number of nonzero digits in decimal expansion of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Comments

Comment from Antti Karttunen, Sep 05 2004: (Start)
Also number of characters needed to write the number n in classical Greek alphabetic system, up to n=999. The Greek alphabetic system assigned values to the letters as follows:
alpha = 1, beta = 2, gamma = 3, delta = 4, epsilon = 5, digamma = 6, zeta = 7, eta = 8, theta = 9, iota = 10, kappa = 20, lambda = 30, mu = 40, nu = 50, xi = 60, omicron = 70, pi = 80, koppa = 90, rho = 100, sigma = 200, tau = 300, upsilon = 400, phi = 500, chi = 600, psi = 700, omega = 800, sampi = 900. (End)
For partial sums see A102685. - Hieronymus Fischer, Jun 06 2012

Examples

			129 is written as rho kappa theta in the old Greek system.
		

References

  • L. Threatte, The Greek Alphabet, in The World's Writing Systems, edited by Peter T. Daniels and William Bright, Oxford Univ. Press, 1996, p. 278.

Crossrefs

Differs from A098378 for the first time at position n=200 with a(200)=1, as only one nonzero Arabic digit (and only one Greek letter) is needed for two hundred, while A098378(200)=2 as two characters are needed in the Ethiopic system.

Programs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j+0.9) - floor(n/10^j)), where m = floor(log_10(n)).
a(n) = m + 1 - A055641(n).
G.f.: (1/(1-x))*Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(n) = A055642(n) - A055641(n).

A031298 Triangle T(n,k): write n in base 10, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 0
Offset: 0

Views

Author

Keywords

Comments

The length of n-th row is given in A055642(n). - Reinhard Zumkeller, Jul 04 2012
According to the formula for T(n,1), columns are numbered starting with 1. One might also number columns starting with the offset 0, as to have the coefficient of 10^k in column k. - M. F. Hasler, Jul 21 2013

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031087 for the base-2 to base-9 analogs.

Programs

  • Haskell
    a031298 n k = a031298_tabf !! n !! k
    a031298_row n = a031298_tabf !! n
    a031298_tabf = iterate succ [0] where
       succ []     = [1]
       succ (9:ds) = 0 : succ ds
       succ (d:ds) = (d + 1) : ds
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Mathematica
    Table[Reverse[IntegerDigits[n]],{n,0,50}]//Flatten (* Harvey P. Dale, Mar 07 2023 *)
  • PARI
    T(n,k)=n\10^(k-1)%10 \\ M. F. Hasler, Jul 21 2013

Formula

T(n,1) = A010879(n); T(n,A055642(n)) = A000030(n). - Reinhard Zumkeller, Jul 04 2012

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011
Edited by M. F. Hasler, Jul 21 2013

A117804 Natural position of n in the string 12345678910111213....

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 1

Views

Author

Warut Roonguthai, Jul 23 2007

Keywords

Comments

The number of digits necessary to write down all the numbers 0, 1, 2, ..., n-1. Thus, the partial sums of A055642 are given by a(n+1). - Hieronymus Fischer, Jun 08 2012
From Daniel Forgues, Mar 21 2013: (Start)
From n = 10^0 + 1 to 10^1: a(n) - a(n-1) = 1 (9 * 10^0 terms);
From n = 10^1 + 1 to 10^2: a(n) - a(n-1) = 2 (9 * 10^1 terms);
From n = 10^2 + 1 to 10^3: a(n) - a(n-1) = 3 (9 * 10^2 terms);
...
From n = 10^k + 1 to 10^(k+1): a(n) - a(n-1) = k+1 (9 * 10^k terms). (End)
By the "number of digits" definition, a(n) = 1 + A058183(n-1) for n > 1. - David Fifield, Jun 02 2019

Examples

			12 begins at the 14th place in 12345678910111213... (we are ignoring "early bird" occurrences here, cf. A116700), so a(12) = 14.
From _Daniel Forgues_, Mar 21 2013: (Start)
a(10^1) = 10. (1*10^1 - 0)
a(10^2) = 190. (2*10^2 - 10)
a(10^3) = 2890. (3*10^3 - 110)
a(10^4) = 38890. (4*10^4 - 1110)
a(10^5) = 488890. (5*10^5 - 11110)
a(10^6) = 5888890. (6*10^6 - 111110)
...
a(10^k) = k*10^k - R_k + 1, R_k := k-th repunit (cf. A002275)
(the number of digits necessary to write down the numbers 0..10^k-1). (End)
		

Crossrefs

Formula

a(n) = d*n + 1 - (10^d - 1)/9 where d is the number of decimal digits in n, i.e., d = floor(log_10(n)) + 1.
From Hieronymus Fischer, Jun 08 2012: (Start)
a(n) = Sum_{j=0..n-1} A055642(j).
a(n) = 1 + A055642(n-1)*n - (10^A055642(n-1)-1)/9.
a(n) = 1 + A055642(n)*n - (10^A055642(n)-1)/9.
a(10^n) = (9*n-1)*(10^n-1)/9 + n + 1. (This is the total number of digits necessary to write down all the numbers with <= n places.)
G.f.: g(x) = x/(1-x) + (x/(1-x)^2)*Sum_{j>=0} x^10^j; corrected by Ilya Gutkovskiy, Jan 09 2017 (End)

A061383 Arithmetic mean of digits is an integer.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 31, 33, 35, 37, 39, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 60, 62, 64, 66, 68, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 91, 93, 95, 97, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129
Offset: 0

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

A004426(a(n)) = A004427(a(n)). - Reinhard Zumkeller, May 27 2010
A175688 is a subsequence; complement of A180157; A180160(a(n))=0. - Reinhard Zumkeller, Aug 15 2010
It seems "obvious" that n log n << a(n) < n log n; is this true? - Charles R Greathouse IV, Feb 06 2013

Examples

			123 is a term as the arithmetic mean is (1+2+3)/3 = 2.
		

Crossrefs

Programs

  • Haskell
    a061383 n = a061383_list !! (n-1)
    a061383_list = filter (\x -> mod (a007953 x) (a055642 x) == 0) [0..]
    -- Reinhard Zumkeller, Jun 18 2013
    
  • Magma
    [0] cat [n: n in [1..130] | IsZero(&+Intseq(n) mod #Intseq(n))];  // Bruno Berselli, Jun 30 2011
    
  • Magma
    [0] cat [n: n in [1..130] | IsIntegral(&+Intseq(n)/#Intseq(n))];   // Bruno Berselli, Feb 09 2016
    
  • Mathematica
    Select[Range[0,129],IntegerQ[Total[x=IntegerDigits[#]]/Length[x]] &] (* Jayanta Basu, May 17 2013 *)
    Select[Range[0,200],IntegerQ[Mean[IntegerDigits[#]]]&] (* Harvey P. Dale, Dec 31 2022 *)
  • PARI
    is(n)=my(v=digits(n));sum(i=1,#v,v[i])%#v==0 \\ Charles R Greathouse IV, Feb 06 2013
    
  • Python
    def ok(n): return n == 0 or sum(d:=list(map(int, str(n))))%len(d) == 0
    print([k for k in range(130) if ok(k)]) # Michael S. Branicky, Apr 23 2025

A024629 n written in fractional base 3/2.

Original entry on oeis.org

0, 1, 2, 20, 21, 22, 210, 211, 212, 2100, 2101, 2102, 2120, 2121, 2122, 21010, 21011, 21012, 21200, 21201, 21202, 21220, 21221, 21222, 210110, 210111, 210112, 212000, 212001, 212002, 212020, 212021, 212022, 212210, 212211, 212212, 2101100, 2101101
Offset: 0

Views

Author

Keywords

Comments

A246435(n) = (number of digits in a(n)) = A055642(a(n)). - Reinhard Zumkeller, Sep 05 2014
The number of positive even n such that a(n) has k+1 digits is A005428(k). - Glen Whitney, Jul 09 2017
The position of the rightmost "2" digit in a(3k), k >= 1, appears to be A087088(k). - Peter Munn, Jun 24 2020 [updated Peter Munn, Jul 14 2020 for new A087088 offset]

Examples

			Representations of the first few numbers are:
   0 =         0
   1 =         1
   2 =         2
   3 =       2 0
   4 =       2 1
   5 =       2 2
   6 =     2 1 0
   7 =     2 1 1
   8 =     2 1 2
   9 =   2 1 0 0
  10 =   2 1 0 1
  11 =   2 1 0 2
  12 =   2 1 2 0
  13 =   2 1 2 1
  14 =   2 1 2 2
  15 = 2 1 0 1 0
[extended and reformatted by _Peter Munn_, Jun 27 2020]
		

Crossrefs

Cf. A081848, A087088, A246435 (string lengths), A244040 (digit sums).

Programs

  • Haskell
    a024629 0 = 0
    a024629 n = 10 * a024629 (2 * n') + t where (n', t) = divMod n 3
    -- Reinhard Zumkeller, Sep 05 2014
  • Maple
    a:= proc(n) `if`(n<1, 0, irem(n, 3, 'q')+a(2*q)*10) end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Jun 19 2018
  • Mathematica
    a[ n_] := If[ n < 1, 0, a[ Quotient[n, 3] 2] 10 + Mod[ n, 3]]; (* Michael Somos, Jun 18 2014 *)
  • PARI
    {a(n) = if( n<1, 0, a(n\3 * 2) * 10 + n%3)}; /* Michael Somos, Jun 18 2014 */
    
  • SageMath
    def basepqExpansion(p,q,n):
        L, i = [n], 1
        while L[i-1] >= p:
            x=L[i-1]
            L[i-1]=x.mod(p)
            L.append(q*(x//p))
            i+=1
        L.reverse()
        return Integer(''.join(str(x) for x in L))
    [basepqExpansion(3,2,n) for n in [0..40]] # Tom Edgar, Hailey R. Olafson, and James Van Alstine, Jun 17 2014; modified and corrected by G. C. Greubel, Aug 20 2019
    

Formula

To represent a number in base b, if a digit is >= b, subtract b and carry 1. In fractional base a/b, subtract a and carry b.
a(0)=0, a(3n+r) = 10*a(2n)+r for n >= 0 and r = 0, 1, 2. - Jianing Song, Oct 15 2022

Extensions

Tanton link corrected by Charles R Greathouse IV, Oct 20 2008

A037123 a(n) = a(n-1) + sum of digits of n.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 100, 102, 105, 109, 114, 120, 127, 135, 144, 154, 165, 168, 172, 177, 183, 190, 198, 207, 217, 228, 240, 244, 249, 255, 262, 270, 279, 289, 300, 312, 325, 330, 336, 343, 351, 360, 370, 381
Offset: 0

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998

Keywords

Comments

Sum of digits of A007908(n). - Franz Vrabec, Oct 22 2007
Also digital sum of A138793(n) for n > 0. - Bruno Berselli, May 27 2011
Sum of the digital sum of i for i from 0 to n. - N. J. A. Sloane, Nov 13 2013

References

  • N. Agronomof, Sobre una función numérica, Revista Mat. Hispano-Americana 1 (1926), 267-269.
  • Maurice d'Ocagne, Sur certaines sommations arithmétiques, J. Sciencias Mathematicas e Astronomicas 7 (1886), 117-128.

Crossrefs

Cf. also A074784, A231688, A231689.
Partial sums of A007953.

Programs

  • Magma
    [ n eq 0 select 0 else &+[&+Intseq(k): k in [0..n]]: n in [0..56] ];  // Bruno Berselli, May 27 2011
  • Maple
    # From N. J. A. Sloane, Nov 13 2013:
    digsum:=proc(n,B) local a; a := convert(n, base, B):
    add(a[i], i=1..nops(a)): end;
    f:=proc(n,k,B) global digsum; local i;
    add( digsum(i,B)^k,i=0..n); end;
    lprint([seq(digsum(n,10),n=0..100)]); # A007953
    lprint([seq(f(n,1,10),n=0..100)]); #A037123
    lprint([seq(f(n,2,10),n=0..100)]); #A074784
    lprint([seq(f(n,3,10),n=0..100)]); #A231688
    lprint([seq(f(n,4,10),n=0..100)]); #A231689
  • Mathematica
    Table[Plus@@Flatten[IntegerDigits[Range[n]]], {n, 0, 200}] (* Enrique Pérez Herrero, Oct 12 2015 *)
    a[0] = 0; a[n_] := a[n - 1] + Plus @@ IntegerDigits@ n; Array[a, 70, 0] (* Robert G. Wilson v, Jul 06 2018 *)
  • PARI
    a(n)=n*(n+1)/2-9*sum(k=1,n,sum(i=1,ceil(log(k)/log(10)),floor(k/10^i)))
    
  • PARI
    a(n)={n++;my(t,i,s);c=n;while(c!=0,i++;c\=10);for(j=1,i,d=(n\10^(i-j))%10;t+=(10^(i-j)*(s*d+binomial(d,2)+d*9*(i-j)/2));s+=d);t} \\ David A. Corneth, Aug 16 2013
    
  • Perl
    for $i (0..100){ @j = split "", $i; for (@j){ $sum += $; } print "$sum,"; } __END_ # gamo(AT)telecable.es
    

Formula

a(n) = Sum_{k=0..n} s(k) = Sum_{k=0..n} A007953(k), where s(k) denote the sum of the digits of k in decimal representation. Asymptotic expression: a(n-1) = Sum_{k=0..n-1} s(k) = 4.5*n*log_10(n) + O(n). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
a(n) = n*(n+1)/2 - 9*Sum_{k=1..n} Sum_{i=1..ceiling(log_10(k))} floor(k/10^i). - Benoit Cloitre, Aug 28 2003
From Hieronymus Fischer, Jul 11 2007: (Start)
G.f.: Sum_{k>=1} ((x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k)))/(1-x)^2.
a(n) = (1/2)*((n+1)*(n - 18*Sum_{k>=1} floor(n/10^k)) + 9*Sum_{k>=1} (1 + floor(n/10^k))*floor(n/10^k)*10^k).
a(n) = (1/2)*((n+1)*(2*A007953(n)-n) + 9*Sum_{k>=1} (1+floor(n/10^k))*floor(n/10^k)*10^k). (End)
a(n) = A007953(A053064(n)). - Reinhard Zumkeller, Oct 10 2008
From Wojciech Raszka, Jun 14 2019: (Start)
a(10^k - 1) = 10*a(10^(k - 1) - 1) + 45*10^(k - 1) for k > 0.
a(n) = a(n mod m) + MSD*a(m - 1) + (MSD*(MSD - 1)/2)*m + MSD*((n mod m) + 1), where m = 10^(A055642(n) - 1), MSD = A000030(n). (End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

A033819 Trimorphic numbers: n^3 ends with n. Also m-morphic numbers for all m > 5 such that m-1 is not divisible by 10 and m == 3 (mod 4).

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9376, 9999, 18751, 31249, 40625, 49999, 50001, 59375, 68751, 81249, 90624, 90625
Offset: 1

Views

Author

Keywords

Comments

n is in this sequence iff it occurs in one of A002283, A007185, A016090, A198971, A199685, A216092, A216093, A224473, A224474, A224475, A224476, A224477, and A224478. - Eric M. Schmidt, Apr 08 2013
Let q(n) = floor(a(n)^3 / 10^A055642(a(n))), where A055642(n) is the number of digits in the decimal expansion of n. As well, let na and nb denote the indices of the preceding and next terms that begin with a 9. Then (1/q(n)) * (a(n)^4 - a(n)^3 - a(n)^2 + a(n)) - 2*a(n)^2 + a(n) + q(n) + 1 = a(na+nb-n)^2 - a(na+nb-n) - q(na+nb-n). - Christopher Hohl, Apr 08 2019

Examples

			376^3 = 53157376 which ends with 376.
		

References

  • S. Premchaud, A class of numbers, Math. Student, 48 (1980), 293-300.

Crossrefs

Cf. A074194, A215558 (cubes of the terms).

Programs

  • Magma
    [n: n in [0..10^5] | Intseq(n^3)[1..#Intseq(n)] eq Intseq(n)]; // Bruno Berselli, Apr 04 2013
  • Mathematica
    Do[x=Floor[N[Log[10, n], 25]]+1; If[Mod[n^3, 10^x] == n, Print[n]], {n, 1, 10000}]
    Select[Range[100000],PowerMod[#,3,10^IntegerLength[#]]==#&](* Harvey P. Dale, Nov 04 2011 *)
    Select[Range[0, 10^5], 10^IntegerExponent[#^3-#, 10]>#&] (* Jean-François Alcover, Apr 04 2013 *)

A061601 9's complement of n: a(n) = 10^d - 1 - n where d is the number of digits in n. If a is a digit in n replace it with 9 - a.

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28
Offset: 0

Views

Author

Amarnath Murthy, May 19 2001

Keywords

Comments

A109002 and A178500 give record values and where they occur: A109002(n+1)=a(A178500(n)) and a(m)<A109002(n+1) for m<A178500(n). - Reinhard Zumkeller, May 28 2010
If n is divisible by 3, so is a(n). The same goes for 9. - Alonso del Arte, Dec 01 2011
For n > 0, a(n-1) consists of the A055642(n) least significant digits of the 10-adic integer -n. - Stefano Spezia, Jan 21 2021

Examples

			a(7) = 2 = 10 - 1 -7. a(123) = 1000 -1 -123 = 876.
		

References

  • Kjartan Poskitt, Murderous Maths: Numbers, The Key to the Universe, Scholastic Ltd, 2002. See p 159.

Crossrefs

Cf. A055120.
See A267193 for complement obverse of n.

Programs

  • Haskell
    a061601 n = if n <= 9 then 9 - n else 10 * ad n' + 9 - d
                where (n',d) = divMod n 10
    -- Reinhard Zumkeller, Feb 21 2014, Oct 04 2011
    
  • Maple
    A061601 := proc(n)
            10^A055642(n)-1-n ;
    end proc: # R. J. Mathar, Nov 30 2011
  • Mathematica
    nineComplement[n_] := FromDigits[Table[9, {Length[IntegerDigits[n]]}] - IntegerDigits[n]]; Table[nineComplement[n], {n, 0, 71}] (* Alonso del Arte, Nov 30 2011 *)
  • PARI
    A061601(n)=my(e=length(Str(n)));10^e-1 - n; \\ Joerg Arndt, Aug 28 2013
    
  • Python
    def A061601(n):
        return 10**len(str(n))-1-n # Indranil Ghosh, Jan 30 2017

Formula

a(n) = if n<10 then 9 - n else 10*a([n/10]) + 9 - n mod 10. - Reinhard Zumkeller, Jan 20 2010
a(n) <= 9n - 1. - Charles R Greathouse IV, Nov 15 2022

Extensions

Corrected and extended by Matthew Conroy, Jan 19 2002

A004216 a(n) = floor(log_10(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A055642.

Programs

Formula

a(n) = if n > 9 then a(floor(n/10)) + 1, else 0. - Reinhard Zumkeller, Oct 31 2001
a(n) = A055642(n) - 1. - L. Edson Jeffery, Jul 09 2014
G.f.: (1/(1 - x))*Sum_{k>=1} x^(10^k). - Ilya Gutkovskiy, Jan 08 2017

Extensions

More terms from James Sellers, Sep 19 2000

A058183 Number of digits in concatenation of first n positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125
Offset: 1

Views

Author

Henry Bottomley, Nov 17 2000

Keywords

Comments

Or, total number of digits in numbers from 1 through n.

Examples

			a(12) = 15 since 123456789101112 has 15 digits.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=0, 0, a(n-1) +length(n)) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 26 2013
    a := proc(n) local d; d:=floor(log10(n))+1; (n+1)*d - (10^d-1)/9; end; # N. J. A. Sloane, Feb 20 2020
  • Mathematica
    Length/@ Flatten/@ IntegerDigits/@ Flatten/@ Rest[FoldList[List, {}, Range[70]]] (* Eric W. Weisstein, Nov 04 2015 *)
    Table[With[{d = IntegerLength[n]}, (n+1) d - (10^d -1)/9], {n, 70}] (* Eric W. Weisstein, Nov 06 2015 *)
    IntegerLength/@ FoldList[#2 + #1 10^IntegerLength[#2] &, Range[70]] (* Eric W. Weisstein, Nov 06 2015 *)
    Accumulate[ IntegerLength@ # & /@ Range @ 70] (* Robert G. Wilson v, Jul 31 2018 *)
  • PARI
    a(n)=my(t=log(10*n+.5)\log(10));n*t+t-10^t\9 \\ Charles R Greathouse IV, Sep 19 2012
    
  • PARI
    a(n) = sum(k=1, n, #digits(k)); \\ Michel Marcus, Jan 01 2017
    
  • Python
    def A058183(n): return (n+1)*(s:=len(str(n))) - (10**s-1)//9 # Chai Wah Wu, May 02 2023

Formula

a(n) = (n+1)*floor(log_10(10*n)) - (10^floor(log_10(10*n))-1)/(10-1).
a(n) = a(n-1) + floor(log_10(10*n)).
a(n) = A055642(A007908(n)).
a(n) = A055642(A053064(n)). - Reinhard Zumkeller, Oct 10 2008
a(n) ~ n log_10 n + O(n). In particular lim inf (n log_10 n - a(n))/n = (1+log(10/9)+log(log(10)))/log(10) and the corresponding lim sup is 10/9. - Charles R Greathouse IV, Sep 19 2012
G.f.: (1-x)^(-2)*Sum_{j>=0} x^(10^j). - Robert Israel, Nov 04 2015
a(n) = b(n)*(n + 1) - (10^b(n) - 19)/9 - 2, where b(n) = A055642(n). - Lorenzo Sauras Altuzarra, May 09 2020
a(n) = A055642(A000422(n)). - Michel Marcus, Sep 11 2021
Previous Showing 41-50 of 508 results. Next