cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A056106 Second spoke of a hexagonal spiral.

Original entry on oeis.org

1, 3, 11, 25, 45, 71, 103, 141, 185, 235, 291, 353, 421, 495, 575, 661, 753, 851, 955, 1065, 1181, 1303, 1431, 1565, 1705, 1851, 2003, 2161, 2325, 2495, 2671, 2853, 3041, 3235, 3435, 3641, 3853, 4071, 4295, 4525, 4761, 5003, 5251, 5505, 5765, 6031, 6303
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

First differences of A027444. - J. M. Bergot, Jun 04 2012
Numbers of the form ((h^2+h+1)^2+(-h^2+h+1)^2+(h^2+h-1)^2)/(h^2-h+1) for h=n-1. - Bruno Berselli, Mar 13 2013
For n > 0: 2*a(n) = A058331(n) + A001105(n) + A001844(n-1) = A251599(3*n-2) + A251599(3*n-1) + A251599(3*n). - Reinhard Zumkeller, Dec 13 2014
For all n >= 6, a(n+1) expressed in base n is "353". - Mathew Englander, Jan 06 2021

Crossrefs

First differences of A053698, A027444, and A188947.
Cf. A113524 (semiprime terms), A002061.
Other spirals: A054552.

Programs

  • Haskell
    a056106 n = n * (3 * n - 1) + 1  -- Reinhard Zumkeller, Dec 13 2014
  • Magma
    I:=[1,3]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+6: n in [1..50]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Table[3*n^2 - n + 1, {n,0,50}] (* G. C. Greubel, Jul 19 2017 *)
  • PARI
    a(n) = 3*n^2-n+1;
    

Formula

a(n) = 3*n^2 - n + 1.
a(n) = a(n-1) + 6*n - 4 = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (1+2*x+3*x^2)*exp(x). - Paul Barry, Mar 13 2003
a(n) = A096777(3*n) for n>0. - Reinhard Zumkeller, Dec 29 2007
G.f.: (1+5*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(n) = n*A002061(n+1) - (n-1)*A002061(n). - Bruno Berselli, Jan 15 2013
a(-n) = A056108(n). - Bruno Berselli, Mar 13 2013

A008810 a(n) = ceiling(n^2/3).

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 3*w = 2*x + y. - Clark Kimberling, Jun 04 2012
a(n) is also the number of L-shapes (3-cell polyominoes) packing into an n X n square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, number of red blocks in Fig 2.5.

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), this sequence (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • Haskell
    a008810 = ceiling . (/ 3) . fromInteger . a000290
    a008810_list = [0,1,2,3,6] ++ zipWith5
                   (\u v w x y -> 2 * u - v + w - 2 * x + y)
       (drop 4 a008810_list) (drop 3 a008810_list) (drop 2 a008810_list)
       (tail a008810_list) a008810_list
    -- Reinhard Zumkeller, Dec 20 2012
    
  • Magma
    [Ceiling(n^2/3): n in [0..60]]; // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(ceil(n^2/3), n=0..60); # G. C. Greubel, Sep 12 2019
  • Mathematica
    Ceiling[Range[0,60]^2/3] (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,6},60] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=ceil(n^2/3) /* Michael Somos, Aug 03 2006 */
    
  • Sage
    [ceil(n^2/3) for n in (0..60)] # G. C. Greubel, Sep 12 2019

Formula

a(-n) = a(n) = ceiling(n^2/3).
G.f.: x*(1 + x^3)/((1 - x)^2*(1 - x^3)) = x*(1 - x^6)/((1 - x)*(1 - x^3))^2.
From Michael Somos, Aug 03 2006: (Start)
Euler transform of length 6 sequence [ 2, 0, 2, 0, 0, -1].
a(3n-1) = A056105(n).
a(3n+1) = A056109(n). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Jun 20 2011
a(A008585(n)) = A033428(n). - Reinhard Zumkeller, Dec 20 2012
9*a(n) = 4 + 3*n^2 - 2*A099837(n+3). - R. J. Mathar, May 02 2013
a(n) = n^2 - 2*A000212(n). - Wesley Ivan Hurt, Jul 07 2013
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(2)*Pi*sinh(2*sqrt(2)*Pi/3)/(1+2*cosh(2*sqrt(2)*Pi/3)). - Amiram Eldar, Aug 13 2022
E.g.f.: (exp(x)*(4 + 3*x*(1 + x)) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022

A081436 Fifth subdiagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 7, 24, 58, 115, 201, 322, 484, 693, 955, 1276, 1662, 2119, 2653, 3270, 3976, 4777, 5679, 6688, 7810, 9051, 10417, 11914, 13548, 15325, 17251, 19332, 21574, 23983, 26565, 29326, 32272, 35409, 38743, 42280, 46026, 49987, 54169, 58578, 63220
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.
Also as A(n) = (1/6)*(6*n^3 - 3*n^2 + 3*n), n>0: structured pentagonal diamond numbers (vertex structure 5). (Cf. A004068 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers.) - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF4 denominators of A156933. See A157705 for background information. - Johannes W. Meijer, Mar 07 2009
Row 1 of the convolution arrays A213831 and A213833. - Clark Kimberling, Jul 04 2012
Partial sums of A056109. - J. M. Bergot, Jun 22 2013
Number of ordered pairs of intersecting multisets of size 2, each chosen with repetition from {1,...,n}. - Robin Whitty, Feb 12 2014
Row sums of A244418. - L. Edson Jeffery, Jan 10 2015

Crossrefs

Programs

Formula

a(n) = (n+1)*(2*n^2 + 3*n + 2)/2.
G.f.: (1+x)*(1+2*x)/(1-x)^4. (Convolution of A005408 and A016777.)
a(n) = A110449(n, n-1), for n>1.
a(n) = (n+1)*T(n+1) + n*T(n), where T( ) are triangular numbers. Binomial transform of [1, 6, 11, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
E.g.f.: exp(x)*(2 + 12*x + 11*x^2 + 2*x^3)/2. - Stefano Spezia, Apr 13 2021
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 14 2021

Extensions

G.f. simplified and crossrefs added by Johannes W. Meijer, Mar 07 2009

A056578 a(n) = 1 + 2*n + 3*n^2 + 4*n^3.

Original entry on oeis.org

1, 10, 49, 142, 313, 586, 985, 1534, 2257, 3178, 4321, 5710, 7369, 9322, 11593, 14206, 17185, 20554, 24337, 28558, 33241, 38410, 44089, 50302, 57073, 64426, 72385, 80974, 90217, 100138, 110761, 122110, 134209, 147082, 160753, 175246, 190585, 206794, 223897, 241918
Offset: 0

Views

Author

Henry Bottomley, Jun 29 2000

Keywords

Examples

			For n>4 this is 4321 translated from base n to base 10.
		

Crossrefs

Note: 1 + 2*x + 3*x^2 + 4*x^3 is the first derivative of 1 + x + x^2 + x^3 + x^4, i.e., A053699.

Programs

Formula

a(n) = (A053699(n+1) - A053699(n-1))/2 - 4*n - 1.
G.f.: (1 + 6*x + 15*x^2 + 2*x^3)/(1-x)^4. - Colin Barker, Jan 10 2012
From Elmo R. Oliveira, Apr 20 2025: (Start)
E.g.f.: exp(x)*(1 + 9*x + 15*x^2 + 4*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

Extensions

More terms from Elmo R. Oliveira, Apr 20 2025

A244807 The hexagonal spiral of Champernowne, read along the East (or 90-degree) ray.

Original entry on oeis.org

1, 2, 9, 1, 5, 3, 3, 7, 3, 1, 3, 0, 1, 9, 3, 2, 8, 4, 3, 8, 3, 4, 0, 0, 5, 4, 5, 7, 0, 8, 9, 7, 9, 1, 7, 1, 1, 1, 1, 1, 7, 1, 9, 1, 7, 1, 1, 1, 1, 2, 7, 2, 9, 2, 7, 2, 1, 2, 1, 2, 7, 3, 9, 3, 7, 3, 1, 3, 1, 3, 7, 4, 9, 4, 7, 4, 1, 4, 1, 4, 7, 5, 9, 5, 7, 5, 1, 5, 1, 6, 7, 6, 9, 6, 7, 6, 1, 7, 1, 7, 7, 7, 9, 8, 7
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Comments

Inspired by Stanislaw M. Ulam's hexagonal spiral, circa 1963. See example section of A056105.
When A056105, A056106, A056107, A056108, A056109 & A003215 were submitted, the offsets were 0. Here the offset is 1.

Examples

			.
..................7...5...1...6...5...1...5...5...1...4
.
................1...6...3...1...5...3...1...4...3...1...3
.
..............3...1...7...1...1...6...1...1...5...1...1...3
.
............7...1...1...0...0...1...9...9...8...9...7...4...1
.
..........1...8...0...7...8...7...7...7...6...7...5...9...1...2
.
........3...1...1...9...9...5...8...5...7...5...6...7...6...1...3
.
......8...1...1...8...6...4...2...4...1...4...0...5...4...9...3...1
.
....1...9...0...0...0...3...9...2...8...2...7...4...5...7...5...1...1
.
..3...1...2...8...6...4...3...1...8...1...7...2...9...5...3...9...1...3
.
9...2...1...1...1...4...0...9...1...1...0...1...6...3...4...7...4...2...1
.
..0...0...8...6...4...3...2...1...4...3...1...6...2...8...5...2...9...1...0
.
1...3...2...2...5...1...0...2...5...1...2...9...1...5...3...3...7...3...1...3
.
..2...1...8...6...4...3...2...1...6...7...8...5...2...7...5...1...9...1...1
.
....1...0...3...3...6...2...1...3...1...4...1...4...3...2...7...2...1...9
.
......1...4...8...6...4...3...2...2...2...3...2...6...5...0...9...1...2
.
........2...1...4...4...7...3...3...4...3...5...3...1...7...1...0...1
.
..........2...0...8...6...4...8...4...9...5...0...5...9...9...1...8
.
............1...5...5...5...6...6...6...7...6...8...6...0...1...2
.
..............2...1...8...6...8...7...8...8...8...9...9...9...1
.
................3...0...6...1...0...7...1...0...8...1...0...7
.
..................1...2...4...1...2...5...1...2...6...1...2
.
....................1...4...4...1...4...5...1...4...6...1
.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]];
    f[n_] := 3n^2- 8n +6 (* see formula section of A244807 *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

For each 30 degrees of the compass, the corresponding spoke (or ray) has a generating formula as follows:
090: 3n^2- 8n +6
060: 12n^2-27n+16
030: 3n^2- 7n+ 5
000: 12n^2-25n+14
330: 3n^2 -6n +4
300: 12n^2-23n+12
270: 3n^2 -5n +3
240: 12n^2-21n+10
210: 3n^2 -4n +2
180: 12n^2-19n +8
150: 3n^2 -3n +1
120: 12n^2-17n+ 6
Also see formula section of A056105.

A033577 a(n) = (3*n+1) * (4*n+1).

Original entry on oeis.org

1, 20, 63, 130, 221, 336, 475, 638, 825, 1036, 1271, 1530, 1813, 2120, 2451, 2806, 3185, 3588, 4015, 4466, 4941, 5440, 5963, 6510, 7081, 7676, 8295, 8938, 9605, 10296, 11011, 11750, 12513, 13300, 14111, 14946, 15805, 16688, 17595, 18526, 19481, 20460, 21463
Offset: 0

Views

Author

Keywords

Comments

Also the 120º spoke (or ray) of a hexagonal spiral of Ulam. - Robert G. Wilson v, Jul 06 2014
If two independent real random variables x and y are distributed according to the same exponential distribution with pdf(x) = lambda * exp(-lambda * x) for some lambda > 0, then the probability that 3 <= x/(n*y) < 4 is given by n/a(n) for n>1. - Andres Cicuttin, Dec 11 2016

Examples

			See A056105 example section for hexagonal spiral of Ulam diagram. - _Robert G. Wilson v_, Jul 06 2014
		

Crossrefs

Programs

Formula

From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1 + 17*x + 6*x^2)/(1-x)^3. (End)
E.g.f.: (1 + 19*x + 12*x^2)*exp(x). - G. C. Greubel, Oct 12 2019

Extensions

More terms from Wesley Ivan Hurt, Jul 06 2014

A244815 The hexagonal spiral of Champernowne, read along the 210-degree ray.

Original entry on oeis.org

1, 6, 3, 2, 3, 4, 5, 8, 0, 1, 3, 6, 1, 4, 4, 2, 3, 3, 3, 0, 5, 4, 5, 8, 6, 8, 3, 7, 9, 9, 9, 1, 1, 1, 1, 1, 7, 1, 9, 1, 7, 1, 1, 1, 1, 1, 7, 1, 9, 2, 7, 2, 1, 2, 1, 2, 7, 2, 9, 2, 7, 3, 1, 3, 1, 3, 7, 3, 9, 3, 7, 4, 1, 4, 1, 4, 7, 4, 9, 4, 7, 5, 1, 5, 1, 5, 7, 5, 9, 6, 7, 6, 1, 6, 1, 7, 7, 7, 9, 7, 7, 7, 1, 8, 1
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			see A244807 example section for its diagram.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; f[n_] := 3n^2 - 4n + 2 (* see formula section of A244807 *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

(3n^2 - 4n + 2)th almost natural number (A033307), Also see formula section of A056105.

A056579 1+2n+3n^2+4n^3+5n^4.

Original entry on oeis.org

1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, 35983, 54321, 78915, 111049, 152127, 203673, 267331, 344865, 438159, 549217, 680163, 833241, 1010815, 1215369, 1449507, 1715953, 2017551, 2357265, 2738179, 3163497, 3636543
Offset: 0

Views

Author

Henry Bottomley, Jun 29 2000

Keywords

Examples

			For n>5 this is 54321 translated from base n to base 10
		

Crossrefs

Note: 1+2x+3x^2+4x^3+5x^4 is derivative of 1+x+x^2+x^3+x^4 +x^5, i.e. A053700. Cf. A000012, A005408, A056109, A056578.

Programs

  • Mathematica
    Join[{1},Table[Total[Table[i n^(i-1),{i,5}]],{n,30}]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,15,129,547,1593},30] (* Harvey P. Dale, Sep 20 2017 *)
  • PARI
    a(n)=1+2*n+3*n^2+4*n^3+5*n^4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) =(A053700(n+1)-A053700(n-1))/2-10n^2-4n-2.
G.f.: -(3*x^4+42*x^3+64*x^2+10*x+1) / (x-1)^5. - Colin Barker, May 04 2013

A086285 Numbers k such that 1 + 2k + 3k^2 is prime.

Original entry on oeis.org

2, 12, 14, 18, 24, 26, 32, 38, 44, 56, 62, 68, 90, 92, 98, 114, 120, 126, 128, 144, 150, 158, 164, 168, 170, 176, 180, 186, 192, 200, 210, 212, 216, 230, 246, 254, 260, 266, 276, 278, 282, 290, 300, 318, 332, 344, 354, 362, 366, 378, 396, 398, 408, 420, 432
Offset: 1

Views

Author

Zak Seidov, Aug 28 2003

Keywords

Comments

Excluding a(1), these are also the bases in which 321 represents a prime number.

Crossrefs

Cf. A056109 (3n^2+2n+1).

Programs

A244805 The 240-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 16, 55, 118, 205, 316, 451, 610, 793, 1000, 1231, 1486, 1765, 2068, 2395, 2746, 3121, 3520, 3943, 4390, 4861, 5356, 5875, 6418, 6985, 7576, 8191, 8830, 9493, 10180, 10891, 11626, 12385, 13168, 13975, 14806, 15661, 16540, 17443, 18370, 19321, 20296, 21295, 22318, 23365, 24436, 25531
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Comments

Numbers of the form 1 + k/2 + k^2/3 (associated k are in A008588). - Bruno Berselli, Jan 20 2017

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Cf. A281333 (1 + floor(n/2) + floor(n^2/3)).

Programs

  • Magma
    [12*n^2-21*n+10: n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244805:=n->12*n^2 - 21*n + 10: seq(A244805(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12 n^2 - 21 n + 10; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 21*n + 10) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 13*x + 10*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 21*n + 10 (see A056105).
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 13*x + 10*x^2) / (1 - x)^3.
(End)
Previous Showing 11-20 of 47 results. Next