A056273
Word structures of length n using a 6-ary alphabet.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, 114700315, 676207628, 4010090463, 23874362200, 142508723651, 852124263684, 5101098232519, 30560194493456, 183176170057707, 1098318779272060, 6586964947803695, 39510014478620232, 237013033135668883
Offset: 0
For a(4) = 15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Muniru A Asiru, Table of n, a(n) for n = 0..1275
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Olli-Samuli Lehmus, Optimized Static Allocation of Signal Processing Tasks onto Signal Processing Cores, Master's Thesis, Aalto Univ. (Finland, 2023). See p. 35.
- Nelma Moreira and Rogerio Reis, dcc-2004-07.ps
- Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto.
- Nelma Moreira and Rogerio Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- Index entries for linear recurrences with constant coefficients, signature (16,-95,260,-324,144).
-
List([0..25],n->Sum([0..6],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
-
[(&+[StirlingSecond(n, i): i in [0..6]]): n in [0..30]]; // Vincenzo Librandi, Nov 07 2018
-
egf := (265+264*exp(x)+135*exp(x*2)+40*exp(x*3)+15*exp(x*4)+exp(6*x))/6!:
ser := series(egf,x,30): seq(n!*coeff(ser,x,n),n=0..22); # Peter Luschny, Nov 06 2018
-
Table[Sum[StirlingS2[n,k],{k,0,6}],{n,0,30}] (* or *) LinearRecurrence[ {16,-95,260,-324,144},{1,1,2,5,15,52},30] (* Harvey P. Dale, Jun 05 2015 *)
-
Vec((1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Nov 07 2018
A152175
Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 18, 13, 3, 1;
1, 9, 43, 50, 20, 3, 1;
1, 19, 126, 221, 136, 36, 4, 1;
1, 29, 339, 866, 773, 296, 52, 4, 1;
1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1;
1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105 , 5, 1;
1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1;
1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A(1,n,k) in formula is the Stirling subset number
A008277.
-
(* Using recursion formula from Gilbert and Riordan:*)
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
{n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A284949
Triangle read by rows: T(n,k) = number of reversible string structures of length n using exactly k different symbols.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 9, 15, 6, 1, 1, 19, 50, 37, 9, 1, 1, 35, 160, 183, 76, 12, 1, 1, 71, 502, 877, 542, 142, 16, 1, 1, 135, 1545, 3930, 3523, 1346, 242, 20, 1, 1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 4, 1;
1, 9, 15, 6, 1;
1, 19, 50, 37, 9, 1;
1, 35, 160, 183, 76, 12, 1;
1, 71, 502, 877, 542, 142, 16, 1;
1, 135, 1545, 3930, 3523, 1346, 242, 20, 1;
1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1;
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
(* achiral color patterns for row of n colors containing k different colors *)
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
(* else *) _, If[OddQ[n],
Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1] + 2^i Ach[n-2-2i, k-2]),
{i, 0, n/2-1}]]]
Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 15}, {k, 1, n}] // Flatten
(* Robert A. Russell, Feb 10 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(ReversiblePerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
\\ Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
T(n)={(matrix(n, n, i, k, stirling(i, k, 2)) + Ach(n))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
A284826
Irregular triangle T(n,k) for 1 <= k <= (n+1)/2: T(n,k) = number of primitive (aperiodic) palindromic structures of length n using exactly k different symbols.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 0, 3, 1, 0, 2, 1, 0, 7, 6, 1, 0, 6, 6, 1, 0, 14, 25, 10, 1, 0, 12, 24, 10, 1, 0, 31, 90, 65, 15, 1, 0, 27, 89, 65, 15, 1, 0, 63, 301, 350, 140, 21, 1, 0, 56, 295, 349, 140, 21, 1, 0, 123, 965, 1701, 1050, 266, 28, 1
Offset: 1
Triangle starts:
1
0
0 1
0 1
0 3 1
0 2 1
0 7 6 1
0 6 6 1
0 14 25 10 1
0 12 24 10 1
0 31 90 65 15 1
0 27 89 65 15 1
0 63 301 350 140 21 1
0 56 295 349 140 21 1
0 123 965 1701 1050 266 28 1
0 120 960 1700 1050 266 28 1
0 255 3025 7770 6951 2646 462 36 1
0 238 2999 7760 6950 2646 462 36 1
0 511 9330 34105 42525 22827 5880 750 45 1
0 495 9305 34095 42524 22827 5880 750 45 1
--------------------------------------------
For n=5, structures with 2 symbols are aabaa, ababa and abbba, so T(5,2) = 3.
For n=6, structures with 2 symbols are aabbaa and abbbba, so T(6,2) = 2.
(In this case, the structure abaaba is excluded because it is not primitive.)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#]*StirlingS2[Ceiling[#/2], k]&];
Table[T[n, k], {n, 1, 15}, {k, 1, Floor[(n+1)/2]}] // Flatten (* Jean-François Alcover, Jun 12 2017, from 2nd formula *)
-
b(n,k) = sumdiv(n,d, moebius(n/d) * k^(ceil(d/2)));
a(n,k) = sum(j=0,k, b(n,k-j)*binomial(k,j)*(-1)^j)/k!;
for(n=1, 20, for(k=1, ceil(n/2), print1( a(n,k),", ");); print(););
A056453
Number of palindromes of length n using exactly two different symbols.
Original entry on oeis.org
0, 0, 2, 2, 6, 6, 14, 14, 30, 30, 62, 62, 126, 126, 254, 254, 510, 510, 1022, 1022, 2046, 2046, 4094, 4094, 8190, 8190, 16382, 16382, 32766, 32766, 65534, 65534, 131070, 131070, 262142, 262142, 524286, 524286, 1048574, 1048574, 2097150, 2097150, 4194302
Offset: 1
The palindromes in two symbols of length three take the forms 000, 111, 010, 101. Of these only two have exactly two symbols. Thus a(3) = 2. - _David Nacin_, Mar 03 2012
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
-
[2^Floor((n+1)/2)-2: n in [1..40]]; // Vincenzo Librandi, Aug 16 2011
-
Table[2^(Floor[n/2] + 1) - 2, {n, 0, 40}] (* David Nacin, Mar 03 2012 *)
LinearRecurrence[{1, 2, -2}, {0, 0, 2}, 40] (* David Nacin, Mar 03 2012 *)
k=2; Table[k! StirlingS2[Ceiling[n/2],k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
-
a(n) = 2^((n+1)\2)-2; \\ Altug Alkan, Sep 25 2018
-
def A056453(n): return (1<<(n+1>>1))-2 # Chai Wah Wu, Feb 18 2024
A275558
Number of classes of endofunctions of [n] under rotation, complement to n+1 and reversal.
Original entry on oeis.org
1, 1, 2, 6, 31, 195, 2182, 30100, 529674, 10778125, 250155012, 6484839306, 185757443582, 5824538174455, 198428907905336, 7298232189810696, 288230385949610020, 12165298000307625609, 546477890436083284338, 26031837576091248872110, 1310720000028416000168044
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
A276543
Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
Offset: 1
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 13 11 3 1
0 8 31 33 16 3 1
0 14 80 136 85 27 4 1
0 21 201 478 434 171 37 4 1
0 39 533 1849 2270 1249 338 54 5 1
...
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n,n,sumdiv(n, d, moebius(d)*M[n/d,])))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A056324
Number of reversible string structures with n beads using a maximum of five different colors.
Original entry on oeis.org
1, 1, 2, 4, 11, 32, 116, 455, 1993, 9134, 43580, 211659, 1041441, 5156642, 25640456, 127773475, 637624313, 3184387574, 15910947980, 79521737939, 397510726681, 1987259550002, 9935420646296, 49674470817195, 248364482308833, 1241798790172214
Offset: 0
For a(4)=11, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, ABBC, and ABCD. The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
- Index entries for linear recurrences with constant coefficients, signature (11, -34, -16, 247, -317, -200, 610, -300).
The sequences above converge to
A103293(n+1).
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=5; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,0,k}]/2,{n,0,40}] (* Robert A. Russell, Oct 28 2018 *)
LinearRecurrence[{11, -34, -16, 247, -317, -200, 610, -300}, {1, 1, 2, 4, 11, 32, 116, 455, 1993}, 40] (* Robert A. Russell, Oct 28 2018 *)
A285012
Irregular triangle read by rows: T(n,k) is the number of periodic palindromic structures of length n using exactly k different symbols, 1 <= k <= n/2 + 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 6, 5, 1, 1, 7, 6, 1, 1, 13, 19, 7, 1, 1, 15, 25, 10, 1, 1, 25, 64, 43, 10, 1, 1, 31, 90, 65, 15, 1, 1, 50, 208, 220, 85, 13, 1, 1, 63, 301, 350, 140, 21, 1, 1, 99, 656, 1059, 618, 154, 17, 1, 1, 127, 966, 1701, 1050, 266, 28, 1
Offset: 1
Triangle starts:
1
1 1
1 1
1 3 1
1 3 1
1 6 5 1
1 7 6 1
1 13 19 7 1
1 15 25 10 1
1 25 64 43 10 1
1 31 90 65 15 1
1 50 208 220 85 13 1
1 63 301 350 140 21 1
1 99 656 1059 618 154 17 1
1 127 966 1701 1050 266 28 1
1 197 2035 4803 4065 1488 258 21 1
1 255 3025 7770 6951 2646 462 36 1
1 391 6250 21105 24915 12857 3222 410 26 1
1 511 9330 34105 42525 22827 5880 750 45 1
...
Example for n=6, k=2:
Periodic symmetry means results are either in the form abccba or abcdcb.
There are 3 binary words in the form abccba that start with 0 and contain a 1 which are 001100, 010010, 011110. Of these, 011110 is equivalent to 001100 after rotation.
There are 7 binary words in the form abcdcb that start with 0 and contain a 1 which are 000100, 001010, 001110, 010001, 010101, 011011, 011111. Of these, 011111 is equivalent to 000100, 010001 is equivalent to 001010 and 011011 is equivalent to 010010 from the first set.
There are therefore a total of 7 + 3 - 4 = 6 equivalence classes so T(6,2) = 6.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
\\ Ach is A304972, Prim is A285037.
Ach(n,k=n) = {my(M=matrix(n, k, n, k, n>=k)); for(n=3, n, for(k=2, k, M[n, k]=k*M[n-2, k] + M[n-2, k-1] + if(k>2, M[n-2, k-2]))); M}
Prim(n,k=n\2+1) = {my(A=Ach(n\2+1,k), S=matrix(n\2+1, k, n, k, stirling(n,k,2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
T(n,k=n\2+1) = {my(A=Prim(n,k)); Mat(vectorv(n, n, sumdiv(n, d, A[d, ])))}
{ my(A=T(20)); for(n=1, matsize(A)[1], print(A[n,1..n\2+1])) } \\ Andrew Howroyd, Oct 02 2019
-
\\ column sequence using above code.
ColSeq(n, k=2) = { Vec(T(n,k)[,k]) } \\ Andrew Howroyd, Oct 02 2019
A285037
Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromic structures using exactly k different symbols, 1 <= k <= n/2 + 1.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 2, 1, 0, 3, 1, 0, 4, 5, 1, 0, 7, 6, 1, 0, 10, 18, 7, 1, 0, 14, 25, 10, 1, 0, 21, 63, 43, 10, 1, 0, 31, 90, 65, 15, 1, 0, 42, 202, 219, 85, 13, 1, 0, 63, 301, 350, 140, 21, 1, 0, 91, 650, 1058, 618, 154, 17, 1, 0, 123, 965, 1701, 1050, 266, 28, 1
Offset: 1
Triangle starts:
1
0 1
0 1
0 2 1
0 3 1
0 4 5 1
0 7 6 1
0 10 18 7 1
0 14 25 10 1
0 21 63 43 10 1
0 31 90 65 15 1
0 42 202 219 85 13 1
0 63 301 350 140 21 1
0 91 650 1058 618 154 17 1
0 123 965 1701 1050 266 28 1
0 184 2016 4796 4064 1488 258 21 1
0 255 3025 7770 6951 2646 462 36 1
0 371 6220 21094 24914 12857 3222 410 26 1
0 511 9330 34105 42525 22827 5880 750 45 1
...
Example for n=6, k=2:
There are 6 inequivalent solutions to A285012(6,2) which are 001100, 010010, 000100, 001010, 001110, 010101. Of these, 010010 and 010101 have a period less than 6, so T(6,2) = 6-2 = 4.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
\\ Ach is A304972
Ach(n,k=n) = {my(M=matrix(n, k, n, k, n>=k)); for(n=3, n, for(k=2, k, M[n, k]=k*M[n-2, k] + M[n-2, k-1] + if(k>2, M[n-2, k-2]))); M}
T(n,k=n\2+1) = {my(A=Ach(n\2+1,k), S=matrix(n\2+1, k, n, k, stirling(n,k,2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
{ my(A=T(20)); for(n=1, matsize(A)[1], print(A[n,1..n\2+1])) } \\ Andrew Howroyd, Oct 01 2019
-
\\ column sequence using above code.
ColSeq(n, k=2) = { Vec(T(n,k)[,k]) } \\ Andrew Howroyd, Oct 01 2019
Comments