cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A153173 a(n) = L(5*n)/L(n) where L(n) = Lucas number A000204(n).

Original entry on oeis.org

11, 41, 341, 2161, 15251, 103361, 711491, 4868641, 33391061, 228811001, 1568437211, 10749853441, 73681573691, 505018447961, 3461454668501, 23725145626561, 162614613425891, 1114577020834241, 7639424866266611
Offset: 1

Views

Author

Artur Jasinski, Dec 20 2008

Keywords

Comments

All numbers in this sequence are congruent to 1 mod 10.

Crossrefs

Programs

  • Magma
    I:=[11, 41, 341, 2161, 15251]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[5*n]/LucasL[n], {n, 1, 50}]
    CoefficientList[Series[x*(11-14*x-29*x^2+6*x^3+x^4)/((1-x)*(x^2-7*x+1)*(x^2+3*x+1)), {x,0,50}], x] (* G. C. Greubel, Dec 21 2017 *)
    a[ n_] := 1 + 5*Fibonacci[n]*Fibonacci[3*n]; (* Michael Somos, Apr 23 2022 *)
  • PARI
    {L(n)=fibonacci(n-1)+fibonacci(n+1)}; a(n) = L(5*n)/L(n) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    my(x='x+O('x^30)); Vec(x*(11-14*x-29*x^2+6*x^3+x^4 )/((1-x)*(x^2-7*x +1)*(x^2+3*x+1))) \\ G. C. Greubel, Dec 21 2017
    
  • PARI
    {a(n) = 1 + 5*fibonacci(n)*fibonacci(3*n)}; /* Michael Somos, Apr 23 2022 */
    

Formula

From R. J. Mathar, Oct 22 2010: (Start)
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(11-14*x-29*x^2+6*x^3+x^4)/( (x-1)*(x^2-7*x+1)*(x^2+3*x+1) ).
a(n) = 1 + A056854(n) - (-1)^n*A005248(n). (End)
From Amiram Eldar, Feb 02 2022: (Start)
a(n) = Lucas(2*n)^2 - (-1)^n*Lucas(2*n) - 1 (Carlitz, Problem B-185).
a(n) = (Lucas(2*n) - 3*(-1)^n)^2 + (-1)^n*(5*Fibonacci(n))^2 (Carlitz, Problem B-186). (End)
a(n) = a(-n) = 1 + 10*A085695(n) = 5 + L(n-1)*L(n)^2*L(n+1) for all n in Z. - Michael Somos, Apr 23 2022

A246453 Lucas numbers (A000204) of the form n^2 + 2.

Original entry on oeis.org

3, 11, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 1

Views

Author

Michel Lagneau, Aug 26 2014

Keywords

Comments

a(n) = {11} union {A000204(2+4*n)} for n=0,1,...
Intersection of A000204 and A059100. - Michel Marcus, Aug 26 2014

Crossrefs

Cf. A000204 (Lucas), A059100 (n^2+2).
Cf. quadrisection of A000032: A056854 (first), A056914 (second), this sequence (third, without 11), A288913 (fourth).

Programs

  • Magma
    I:=[3,11,18,123]; [n le 4 select I[n] else 7*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    with(combinat,fibonacci):lst:={}:lst1:={}:nn:=5000:
      for n from 1 to nn do:
        lst:=lst union {2*fibonacci(n-1)+fibonacci(n)}:
      od:
       for m from 1 to nn do:
        if {m^2+2} intersect lst = {m^2+2}
        then
        lst1:=lst1 union {m^2+2}:
        else
        fi:
       od:
       print(lst1):
  • Mathematica
    CoefficientList[Series[x*(3-10*x-56*x^2+8*x^3)/(1-7*x+x^2), {x,0,50}], x] (* or *) LinearRecurrence[{7,-1}, {3, 11, 18, 123}, 30] (* G. C. Greubel, Dec 21 2017 *)
    Select[LucasL[Range[100]],IntegerQ[Sqrt[#-2]]&] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    lista(nn) = for (n=0, nn, luc = fibonacci(n+1) + fibonacci(n-1); if (issquare(luc-2), print1(luc, ", "))); \\ Michel Marcus, Mar 29 2016
    
  • PARI
    Vec(x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    

Formula

From Colin Barker, Jun 20 2017: (Start)
G.f.: x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2).
a(n) = (2^(-n)*((7+3*sqrt(5))^n*(-20+9*sqrt(5)) + (7-3*sqrt(5))^n*(20+9*sqrt(5)))) / sqrt(5) for n>2.
a(n) = 7*a(n-1) - a(n-2) for n>4. (End)
E.g.f.: 2*exp(7*x/2)*(9*cosh(3*sqrt(5)*x/2) - 4*sqrt(5)*sinh(3*sqrt(5)*x/2)) + 4*x^2 - 18. - Stefano Spezia, Apr 14 2025

Extensions

Corrected by Michel Marcus, Mar 29 2016

A153175 a(n) = L(7*n)/L(n) where L(n) = Lucas number A000204(n).

Original entry on oeis.org

29, 281, 6119, 101521, 1875749, 33281921, 599786069, 10745088481, 192933544679, 3461223997001, 62114818827629, 1114566304366081, 20000347407134669, 358889844987430121, 6440029487834912999, 115561554399692896321
Offset: 1

Views

Author

Artur Jasinski, Dec 20 2008

Keywords

Comments

All numbers in this sequence are:
congruent to 9 mod 10 (iff n is odd),
congruent to 1 mod 10 (iff n is even).

Crossrefs

Cf. A153177, A153179, A153180. [From R. J. Mathar, Oct 22 2010]

Programs

  • Magma
    [Lucas(7*n)/Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[7*n]/LucasL[n], {n, 1, 50}]
  • PARI
    {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
    for(n=0,30, print1( lucas(7*n)/lucas(n), ", ")) \\ G. C. Greubel, Dec 21 2017
    

Formula

From R. J. Mathar, Oct 22 2010: (Start)
a(n) = +13*a(n-1) +104*a(n-2) -260*a(n-3) -260*a(n-4) +104*a(n-5) +13*a(n-6) -a(n-7).
G.f.: -x*(-29+96*x+550*x^2-290*x^3-200*x^4+16*x^5+x^6) / ( (1+x)*(x^2-3*x+1)*(x^2-18*x+1)*(x^2+7*x+1) ).
a(n) = A005248(n) +A087215(n) -(-1)^n*A056854(n) - (-1)^n. (End)

A153177 a(n) = L(9*n)/L(n) where L(n) = Lucas number A000204(n).

Original entry on oeis.org

76, 1926, 109801, 4769326, 230701876, 10716675201, 505618944676, 23714405408926, 1114769987764201, 52357935173823126, 2459933168462154076, 115560463558534156801, 5428954301161174383676, 255043991670277234750326
Offset: 1

Views

Author

Artur Jasinski, Dec 20 2008

Keywords

Comments

All numbers in this sequence are:
congruent to 1 mod 100 (iff n is congruent to 0 mod 3),
congruent to 26 mod 100 (iff n is congruent to 2 or 4 mod 6),
congruent to 76 mod 100 (iff n is congruent to 1 or 5 mod 6).

Crossrefs

Programs

  • Magma
    [Lucas(9*n)/Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[9*n]/LucasL[n], {n, 1, 50}]
    LinearRecurrence[{34,714,-4641,-12376,12376,4641,-714,-34,1},{76,1926,109801,4769326,230701876,10716675201,505618944676,23714405408926,1114769987764201},20] (* Harvey P. Dale, Aug 12 2012 *)
  • PARI
    {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
    for(n=0,30, print1( lucas(9*n)/lucas(n), ", ")) \\ G. C. Greubel, Dec 21 2017
    

Formula

From R. J. Mathar, Oct 22 2010: (Start)
a(n) = 34*a(n-1) +714*a(n-2) -4641*a(n-3) -12376*a(n-4) +12376*a(n-5) +4641*a(n-6) -714*a(n-7) -34*a(n-8) +a(n-9).
G.f.: -x*(76-658*x-9947*x^2+13644*x^3+26020*x^4-5306*x^5-1372*x^6+42*x^7 +x^8) / ((x-1)*(x^2+18*x+1)*(x^2-47*x+1)*(x^2+3*x+1)*(x^2-7*x+1)).
a(n) = 1-(-1)^n*A087215(n) -(-1)^n*A005248(n) +A056854(n) +A087265(n). (End)

A153179 a(n) = L(11*n)/L(n) where L(n) = A000204(n).

Original entry on oeis.org

199, 13201, 1970299, 224056801, 28374454999, 3450736132801, 426236170575799, 52337681992411201, 6441140796368008699, 792018481913198430001, 97420733208491869044199, 11981539981561372141075201
Offset: 1

Views

Author

Artur Jasinski, Dec 20 2008

Keywords

Comments

All numbers in this sequence are:
congruent to 99 mod 100 (iff n is odd),
congruent to 1 mod 100 (iff n is even).

Crossrefs

Programs

  • Magma
    [Lucas(11*n)/Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[11*n]/LucasL[n], {n, 1, 50}]
  • PARI
    {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
    for(n=0,30, print1( lucas(11*n)/lucas(n), ", ")) \\ G. C. Greubel, Dec 21 2017
    

Formula

From R. J. Mathar, Oct 22 2010: (Start)
a(n) = +89*a(n-1) +4895*a(n-2) -83215*a(n-3) -582505*a(n-4) +1514513*a(n-5) +1514513*a(n-6) -582505*a(n-7) -83215*a(n-8) +4895*a(n-9) +89*a(n-10) -a(n-11).
G.f.: -1 -1/(1+x) +(-2-47*x)/(x^2+47*x+1) +(2-3*x)/(x^2-3*x+1) +(-2-7*x)/(x^2+7*x+1) +(2-123*x)/(x^2-123*x+1) +(2-18*x)/(x^2-18*x+1).
a(n) = -(-1)^n -(-1)^n*A087265(n) +A005248(n) -(-1)^n*A056854(n) +A065705(n) +A087215(n). (End)

A156094 5 F(2n) (F(2n) - 1) + 1 where F(n) denotes the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 31, 281, 2101, 14851, 102961, 708761, 4865911, 33372361, 228792301, 1568309051, 10749725281, 73680695281, 505017569551, 3461448647801, 23725139605861, 162614572159411, 1114576979567761, 7639424583421961, 52361395886149351
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 15401, 2311, 361, 61, 11, [1], 1, 31, 281, 2101, 14851, ... This is A156095-reversed followed by A156094, without repeating the central 1. That is, A156094(-n) = A156095(n).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := 5 Fibonacci[2n] (Fibonacci[2n] - 1) + 1
    5(#*(#-1))&/@Fibonacci[Range[0,40,2]]+1 (* Harvey P. Dale, Jan 06 2013 *)

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
Alternate formula: a(n) = L(4n) - 5 F(2n) - 1.
Recurrence: a(n) - 10 a(n-1) + 23 a(n-2) - 10 a(n-3) + a(n-4) = -5.
Recurrence: a(n) - 11 a(n-1) + 33 a(n-2) - 33 a(n-3) + 11 a(n-4) - a(n-5) = 0.
G.f.: A(x) = (1 - 10 x + 53 x^2 - 60 x^3 + 11 x^4)/(1 - 11 x + 33 x^2 - 33 x^3 + 11 x^4 - x^5) = (1 - 10 x + 53 x^2 - 60 x^3 + 11 x^4)/((1 - x) (1 - 7 x + x^2) (1 - 3 x + x^2)).
a(n)=A056854(n)-5*A001906(n)-1. - R. J. Mathar, Feb 23 2009
a(n)=((2*sqrt(5))/2)*(((3-sqrt(5))/2)^n-((3+sqrt(5))/2)^n)+((7+3*sqrt(5))/2)^n+((7-3*sqrt(5))/2)^n-1. - Tim Monahan, Aug 15 2011

A180033 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 5*x - 5*x^2).

Original entry on oeis.org

1, 6, 35, 205, 1200, 7025, 41125, 240750, 1409375, 8250625, 48300000, 282753125, 1655265625, 9690093750, 56726796875, 332084453125, 1944056250000, 11380703515625, 66623798828125, 390022511718750, 2283231552734375
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the corner and side squares (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032.
The sequence above corresponds to 56 red queen vectors, i.e., A[5] vector, with decimal values between 47 and 488. The central squares lead for these vectors to A057088.
Inverse binomial transform of A004187 (without the leading 0).
Equals the INVERT transform of A086347 and the INVERTi transform of A180167. - Gary W. Adamson, Aug 14 2010

Crossrefs

Cf. A086347, A180167. - Gary W. Adamson, Aug 14 2010

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
    
  • Maple
    with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [0,0,0,1,0,1,1,1,1]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{5,5},{1,6}, 30] (* Vincenzo Librandi, Nov 15 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1-5*x-5*x^2)) \\ G. C. Greubel, Apr 07 2019
    
  • Sage
    ((1+x)/(1-5*x-5*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 07 2019

Formula

G.f.: (1+x)/(1 - 5*x - 5*x^2).
a(n) = 5*a(n-1) + 5*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7+5*A)*A^(-n-1) + (7+5*B)*B^(-n-1))/45 with A = (-5+3*sqrt(5))/10 and B = (-5-3*sqrt(5))/10.
Limit_{k->oo} a(n+k)/a(k) = 2*5^(n/2)/(L(2*n) - F(2*n)*sqrt(5)) with L(n) = A000032(n) and F(n) = A000045(n).
Limit_{k->oo} a(2*n+k)/a(k) = 2*A000351(n)/(A056854(n) - 3*A004187(n)*sqrt(5)) for n >= 1.
Limit_{k->oo} a(2*n-1+k)/a(k) = 2*A000351(n)/(3*A049685(n-1)*sqrt(5) - 5*A033890(n-1)) for n >= 1.
a(n) = A057088(n+1)/5. a(2*n) = 5^n*F(4*(n+1))/3, a(2*n+1) = 5^n*L(2*(2*n+3))/3. - Ehren Metcalfe, Apr 04 2019
E.g.f.: exp(5*x/2)*(15*cosh(3*sqrt(5)*x/2) + 7*sqrt(5)*sinh(3*sqrt(5)*x/2))/15. - Stefano Spezia, Mar 17 2025

A288913 a(n) = Lucas(4*n + 3).

Original entry on oeis.org

4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
Offset: 0

Views

Author

Bruno Berselli, Jun 19 2017

Keywords

Comments

a(n) mod 4 gives A101000.

Crossrefs

Cf. A033891: fourth quadrisection of A000045.
Partial sums are in A081007 (after 0).
Positive terms of A098149, and subsequence of A001350, A002878, A016897, A093960, A068397.
Quadrisection of A000032: A056854 (first), A056914 (second), A246453 (third, without 11), this sequence (fourth).

Programs

  • Magma
    [Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    LucasL[4 Range[0, 21] + 3]
    LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(4*n + 3)
    print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
  • Sage
    def L():
        x, y = -1, 4
        while True:
            yield y
            x, y = y, 7*y - x
    r = L(); [next(r) for  in (0..21)] # _Peter Luschny, Jun 20 2017
    

Formula

G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n) = 4*A004187(n+1) + A004187(n).
a(n) = 5*A003482(n) + 4 = 5*A081016(n) - 1.
a(n) = A002878(2*n+1) = A093960(2*n+3) = A001350(4*n+3) = A068397(4*n+3).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.

A081069 a(n) = Lucas(4n)+2 = Lucas(2n)^2.

Original entry on oeis.org

4, 9, 49, 324, 2209, 15129, 103684, 710649, 4870849, 33385284, 228826129, 1568397609, 10749957124, 73681302249, 505019158609, 3461452808004, 23725150497409, 162614600673849, 1114577054219524, 7639424778862809
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000032 (Lucas numbers), A001622, A005248, A056854.

Programs

  • Magma
    [ Lucas(2*n)^2: n in [0..70] ]; // Vincenzo Librandi, Apr 16 2011
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,luc(4*n)+2) od: # James Sellers, Mar 05 2003
    G:=(x,n)-> cos(x)^n +cos(3*x)^n: seq(simplify(2^(4*n)*G(Pi/5,2*n)^2), n=0..19) # Gary Detlefs, Dec 05 2010
    t:= n-> sum(fibonacci(4*k+2),k=0..n):seq(5*t(n)+4,n=-1..18); # Gary Detlefs, Dec 06 2010
  • Mathematica
    LucasL[4*Range[0,20]]+2 (* Harvey P. Dale, Sep 09 2012 *)

Formula

a(n) = A005248(n)^2 = A056854(n)+2.
a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
a(n) = 2^(4*n)*(cos(Pi/5)^(2*n)+cos(3*Pi/5)^(2*n))^2. - Gary Detlefs, Dec 05 2010
From Gary Detlefs, Dec 06 2010: (Start)
a(n) = 7*a(n-1)-a(n-2)-10, n>1.
a(n) = 5*Sum_{k=0..n}(Fibonacci(4*k+2))+4, with offset -1. (End)
G.f.: -(9*x^2-23*x+4)/((x-1)*(x^2-7*x+1)). - Colin Barker, Jun 24 2012
Product_{n>=0} (1 + 5/a(n)) = 3*phi^2/2, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 04 2024
a(n) = Sum_{k>=0} Lucas(2*n*k)/(Lucas(2*n)^k). - Diego Rattaggi, Jan 12 2025
E.g.f.: 2*(cosh(x) + exp(7*x/2)*cosh(3*sqrt(5)*x/2) + sinh(x)). - Stefano Spezia, Jan 20 2025

A215465 a(n) = (Lucas(4n) - Lucas(2n))/4.

Original entry on oeis.org

0, 1, 10, 76, 540, 3751, 25840, 177451, 1217160, 8344876, 57202750, 392089501, 2687463360, 18420257701, 126254611990, 865362736876, 5931286406640, 40653646980451, 278644255208560, 1909856172864751, 13090349042248500
Offset: 0

Views

Author

R. J. Mathar, Aug 11 2012

Keywords

Comments

This is a divisibility sequence, that is, if n | m then a(n) | a(m). However, it is not a strong divisibility sequence. It is the case k = 3 of a 1-parameter family of 4th-order linear divisibility sequences with o.g.f. x*(1 - x^2)/( (1 - k*x + x^2)*(1 - (k^2 - 2)*x + x^2) ). Compare with A000290 (case k = 2) and A085695 (case k = -3). - Peter Bala, Jan 17 2014
In general, for distinct integers r and s with r = s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. See A273622 for the case r = 3, s = 1. - Peter Bala, May 27 2016

Examples

			a(3) = 76 because the 12th (4 * 3rd) Lucas number is 22, the 6th (2 * 3rd) Lucas number is 18, and (322 - 18)/4 = 304/4 = 76.
		

Crossrefs

Programs

  • Magma
    [(Lucas(4*n) - Lucas(2*n))/4: n in [0..20]]; // Vincenzo Librandi, Dec 23 2012
    
  • Maple
    A215465 := proc(n)
        (A000032(4*n)-A000032(2*n))/4 ;
    end proc:
  • Mathematica
    Table[(LucasL[4n] - LucasL[2n])/4, {n, 0, 19}] (* Alonso del Arte, Aug 11 2012 *)
    CoefficientList[Series[-x*(x-1)*(1+x)/((x^2 - 7*x + 1)* (x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
    LinearRecurrence[{10,-23,10,-1},{0,1,10,76},50] (* G. C. Greubel, Jun 02 2016 *)
  • PARI
    {a(n) = my(w = quadgen(5)^(2*n)); (2*real(w^2-w) + imag(w^2-w))/4}; /* Michael Somos, Dec 29 2022 */

Formula

4*a(n) = A000032(4*n) - A000032(2*n).
a(n) = A056854(n)/4 - A005248(n)/4.
G.f.: -x*(x-1)*(1+x) / ( (x^2-7*x+1)*(x^2-3*x+1) ).
a(n) = 10*a(n-1) - 23*a(n-2) + 10*a(n-3) - a(n-4). - G. C. Greubel, Jun 02 2016
a(n) = 2^(-2-n)*((7-3*sqrt(5))^n-(3-sqrt(5))^n-(3+sqrt(5))^n+(7+3*sqrt(5))^n). - Colin Barker, Jun 02 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Dec 29 2022
Previous Showing 21-30 of 38 results. Next