A261357
Pyramid of coefficients in expansion of (1 + 2*x + 2*y)^n.
Original entry on oeis.org
1, 1, 2, 2, 1, 4, 4, 4, 8, 4, 1, 6, 6, 12, 24, 12, 8, 24, 24, 8, 1, 8, 8, 24, 48, 24, 32, 96, 96, 32, 16, 64, 96, 64, 16, 1, 10, 10, 40, 80, 40, 80, 240, 240, 80, 80, 320, 480, 320, 80, 32, 160, 320, 320, 160, 32
Offset: 0
Here is the fourth (n=3) slice of the pyramid:
1
6 6
12 24 12
8 24 24 8
-
p:= proc(i, j, k) option remember;
if k<0 or i<0 or i>k or j<0 or j>i then 0
elif {i, j, k}={0} then 1
else p(i, j, k-1) +2*p(i-1, j, k-1) +2*p(i-1, j-1, k-1)
fi
end:
seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..5);
# Adapted from Alois P. Heinz's Maple program for A261356
-
p[i_, j_, k_] := p[i, j, k] = If[k < 0 || i < 0 || i > k || j < 0 || j > i, 0, If[Union@{i, j, k} == {0}, 1, p[i, j, k - 1] + 2*p[i - 1, j, k - 1] + 2*p[i - 1, j - 1, k - 1]]];
Table[Table[Table[p[i, j, k], {j, 0, i}], {i, 0, k}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Mar 17 2025, after Alois P. Heinz *)
-
tabf(nn) = {for (n=0, nn, for (j=0, n, for (k=0, j, print1(2^j*binomial(n,j)*binomial(j,k), ", ")); print();); print(););} \\ Michel Marcus, Oct 07 2015
A356546
Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).
Original entry on oeis.org
1, 2, 2, 6, 12, 6, 20, 60, 60, 20, 70, 280, 420, 280, 70, 252, 1260, 2520, 2520, 1260, 252, 924, 5544, 13860, 18480, 13860, 5544, 924, 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432, 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870
Offset: 0
Triangle T(n, k) begins:
[0] 1;
[1] 2, 2;
[2] 6, 12, 6;
[3] 20, 60, 60, 20;
[4] 70, 280, 420, 280, 70;
[5] 252, 1260, 2520, 2520, 1260, 252;
[6] 924, 5544, 13860, 18480, 13860, 5544, 924;
[7] 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432;
[8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870;
-
A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!):
for n from 0 to 8 do seq(A356546(n, k), k=0..n) od;
-
T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* Michael Somos, Aug 18 2022 *)
-
{T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* Michael Somos, Aug 18 2022 */
-
def A356546(n, k):
return rising_factorial(n+1,n) // (factorial(k) * factorial(n-k))
for n in range(9): print([A356546(n, k) for k in range(n+1)])
A360238
a(n) = [y^n*x^n/n] log( Sum_{m>=0} (m + y)^(2*m) * x^m ) for n >= 1.
Original entry on oeis.org
2, 42, 1376, 60934, 3377252, 224036904, 17282039280, 1519096411230, 149867251224092, 16398595767212452, 1971137737765484444, 258215735255164847944, 36617351885600586385222, 5588967440618883091216208, 913592455995572681826313856, 159241707066923571547572653630
Offset: 1
L.g.f.: A(x) = 2*x + 42*x^2/2 + 1376*x^3/3 + 60934*x^4/4 + 3377252*x^5/5 + 224036904*x^6/6 + 17282039280*x^7/7 + 1519096411230*x^8/8 + ...
a(n) equals the coefficient of y^n*x^n/n in the logarithmic series:
log( Sum_{m>=0} (m + y)^(2*m) * x^m ) = (y^2 + 2*y + 1)*x + (y^4 + 12*y^3 + 42*y^2 + 60*y + 31)*x^2/2 + (y^6 + 30*y^5 + 297*y^4 + 1376*y^3 + 3348*y^2 + 4188*y + 2140)*x^3/3 + (y^8 + 56*y^7 + 1100*y^6 + 10792*y^5 + 60934*y^4 + 209464*y^3 + 436692*y^2 + 510952*y + 258779)*x^4/4 + (y^10 + 90*y^9 + 2945*y^8 + 49960*y^7 + 510160*y^6 + 3377252*y^5 + 14971780*y^4 + 44457000*y^3 + 85336175*y^2 + 96141170*y + 48446971)*x^5/5 + (y^12 + 132*y^11 + 6486*y^10 + 169236*y^9 + 2730921*y^8 + 29547696*y^7 + 224036904*y^6 + 1214958240*y^5 + 4717830978*y^4 + 12868488144*y^3 + 23497266672*y^2 + 25858665696*y + 12994749280)*x^6/6 + ...
Exponentiation yields the g.f. of A360239:
exp(A(x)) = 1 + 2*x + 23*x^2 + 502*x^3 + 16414*x^4 + 716936*x^5 + 39167817*x^6 + 2567058766*x^7 + 196159319943*x^8 + ... + A360239(n)*x^n + ...
-
{a(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(2*m) *x^m ) +x*O(x^n) ), n, x), n, y)}
for(n=0,20,print1(a(n),", "))
A386843
a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k,n-k).
Original entry on oeis.org
1, 6, 39, 268, 1905, 13842, 102123, 761880, 5732325, 43417630, 330620895, 2528772132, 19412942809, 149497184298, 1154365194195, 8934458916912, 69291946278861, 538372925816886, 4189702003359687, 32651982699233340, 254800541773725633, 1990683254889381954
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k, n-k));
A386918
a(n) = 2^n * binomial(4*n,n).
Original entry on oeis.org
1, 8, 112, 1760, 29120, 496128, 8614144, 151557120, 2692684800, 48201359360, 868004380672, 15706806542336, 285362317180928, 5202031080243200, 95104728494899200, 1743063914667048960, 32016101348447354880, 589188508080622534656, 10861173739509105295360
Offset: 0
-
[2^n * Binomial(4*n,n): n in [0..26]]; // Vincenzo Librandi, Aug 11 2025
-
Table[2^n*Binomial[4*n,n],{n,0,30}] (* Vincenzo Librandi, Aug 11 2025 *)
-
a(n) = 2^n*binomial(4*n, n);
A126936
Coefficients of a polynomial representation of the integral of 1/(x^4 + 2*a*x^2 + 1)^(n+1) from x = 0 to infinity.
Original entry on oeis.org
1, 6, 4, 42, 60, 24, 308, 688, 560, 160, 2310, 7080, 8760, 5040, 1120, 17556, 68712, 114576, 99456, 44352, 8064, 134596, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1038312, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720
Offset: 0
The table T(n,l) (with rows n >= 0 and columns l = 0..n) starts:
1;
6, 4;
42, 60, 24;
308, 688, 560, 160;
2310, 7080, 8760, 5040, 1120;
17556, 68712, 114576, 99456, 44352, 8064;
...
For n = 2, N(a;2) = Integral_{x=0..oo} dx/(x^4 + 2*a*x + 1)^3 = 2^(-2*2)*(Sum_{l=0..2} T(2,l)*a^l) * Pi/(2^(2 + 3/2) * (a + 1)^(2 + 1/2) = (42 + 60*a + 24*a^2) * Pi/(32 * (2*(a+1))^(5/2)) for a > -1. - _Petros Hadjicostas_, May 25 2020
- Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
- George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
- Victor H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Victor H. Moll, Combinatorial sequences arising from a rational integral, Onl. J. Anal. Combin., no 2 (2007), #4.
-
A126936 := proc(m, l)
add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m):
end:
seq(seq(A126936(m,l), l=0..m), m=0..12); # R. J. Mathar, May 25 2020
-
t[m_, l_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, l, m}]; Table[t[m, l], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Maple, adapted May 2020 *)
A098580
Expansion of (sqrt(1-8*x)-4*x)/sqrt(1-8*x).
Original entry on oeis.org
1, -4, -16, -96, -640, -4480, -32256, -236544, -1757184, -13178880, -99573760, -756760576, -5778898944, -44304891904, -340806860800, -2629081497600, -20331563581440, -157569617756160, -1223481737871360, -9515969072332800, -74124390668697600
Offset: 0
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((sqrt(1-8*x)-4*x)/sqrt(1-8*x))) // G. C. Greubel, Feb 03 2018
-
CoefficientList[Series[(Sqrt[1-8x]-4x)/Sqrt[1-8x],{x,0,20}],x] (* Harvey P. Dale, May 06 2017 *)
-
x='x+O('x^30); Vec((sqrt(1-8*x)-4*x)/sqrt(1-8*x)) \\ G. C. Greubel, Feb 03 2018
A103973
Expansion of (sqrt(1-8*x^2)+8*x^2+2*x-1)/(2*x*sqrt(1-8*x^2)).
Original entry on oeis.org
1, 2, 4, 4, 24, 16, 160, 80, 1120, 448, 8064, 2688, 59136, 16896, 439296, 109824, 3294720, 732160, 24893440, 4978688, 189190144, 34398208, 1444724736, 240787456, 11076222976, 1704034304, 85201715200, 12171673600, 657270374400
Offset: 0
A103978
Expansion of (sqrt(1-12*x^2)+12*x^2+2*x-1)/(2*x*sqrt(1-12*x^2)).
Original entry on oeis.org
1, 3, 6, 9, 54, 54, 540, 405, 5670, 3402, 61236, 30618, 673596, 288684, 7505784, 2814669, 84440070, 28146690, 956987460, 287096238, 10909657044, 2975361012, 124965162504, 31241290626, 1437099368796, 331638315876, 16581915793800
Offset: 0
-
rec:= -(n+1)*a(n)+2*(n-1)*a(n-1)+12*(2*n-3)*a(n-2)+24*(2-n)*a(n-3)+144*(4-n)*a(n-4):
f:= gfun:-rectoproc({rec=0,a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 9},a(n),remember):
map(f, [$0..30]); # Robert Israel, Sep 13 2020
-
CoefficientList[Series[(Sqrt[1-12x^2]+12x^2+2x-1)/(2x Sqrt[1-12x^2]),{x,0,30}],x] (* Harvey P. Dale, Aug 06 2022 *)
A343842
Series expansion of 1/sqrt(8*x^2 + 1), even powers only.
Original entry on oeis.org
1, -4, 24, -160, 1120, -8064, 59136, -439296, 3294720, -24893440, 189190144, -1444724736, 11076222976, -85201715200, 657270374400, -5082890895360, 39392404439040, -305870434467840, 2378992268083200, -18531097667174400, 144542561803960320, -1128808577897594880
Offset: 0
-
gf := 1/sqrt(8*x^2 + 1): ser := series(gf, x, 32):
seq(coeff(ser, x, 2*n), n = 0..21);
-
Take[CoefficientList[Series[1/Sqrt[8*x^2 + 1], {x, 0, 42}], x], {1, -1, 2}] (* Amiram Eldar, May 05 2021 *)
-
my(x='x+O('x^25)); Vec(1/sqrt(8*x + 1)) \\ Michel Marcus, May 04 2021
Comments