cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A261357 Pyramid of coefficients in expansion of (1 + 2*x + 2*y)^n.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 4, 4, 8, 4, 1, 6, 6, 12, 24, 12, 8, 24, 24, 8, 1, 8, 8, 24, 48, 24, 32, 96, 96, 32, 16, 64, 96, 64, 16, 1, 10, 10, 40, 80, 40, 80, 240, 240, 80, 80, 320, 480, 320, 80, 32, 160, 320, 320, 160, 32
Offset: 0

Views

Author

Dimitri Boscainos, Aug 16 2015

Keywords

Comments

T(n,j,k) is the number of lattice paths from (0,0,0) to (n,j,k) with steps (1,0,0), two kinds of steps (1,1,0) and two kinds of steps (1,1,1).
The sum of the numbers in each slice of the pyramid is 5^n.
The terms of the j-th row of the n-th slice of this pyramid are the sum of the terms in each antidiagonal of the j-th triangle of the n-th slice of A261358. - Dimitri Boscainos, Aug 21 2015

Examples

			Here is the fourth (n=3) slice of the pyramid:
        1
      6   6
   12  24  12
  8  24  24   8
		

Crossrefs

Programs

  • Maple
    p:= proc(i, j, k) option remember;
          if k<0 or i<0 or i>k or j<0 or j>i then 0
        elif {i, j, k}={0} then 1
        else p(i, j, k-1) +2*p(i-1, j, k-1) +2*p(i-1, j-1, k-1)
          fi
        end:
    seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..5);
    # Adapted from Alois P. Heinz's Maple program for A261356
  • Mathematica
    p[i_, j_, k_] := p[i, j, k] = If[k < 0 || i < 0 || i > k || j < 0 || j > i, 0, If[Union@{i, j, k} == {0}, 1, p[i, j, k - 1] + 2*p[i - 1, j, k - 1] + 2*p[i - 1, j - 1, k - 1]]];
    Table[Table[Table[p[i, j, k], {j, 0, i}], {i, 0, k}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Mar 17 2025, after Alois P. Heinz *)
  • PARI
    tabf(nn) = {for (n=0, nn, for (j=0, n, for (k=0, j, print1(2^j*binomial(n,j)*binomial(j,k), ", ")); print();); print(););} \\ Michel Marcus, Oct 07 2015

Formula

T(i+1,j,k) = 2*T(i,j-1,k-1)+ 2*T(i,j-1,k) + T(i,j,k); T(i,j,-1) = 0, ...; T(0,0,0) = 1.
T(n,j,k) = 2^j*binomial(n,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015

A356546 Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 20, 60, 60, 20, 70, 280, 420, 280, 70, 252, 1260, 2520, 2520, 1260, 252, 924, 5544, 13860, 18480, 13860, 5544, 924, 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432, 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870
Offset: 0

Views

Author

Peter Luschny, Aug 12 2022

Keywords

Comments

The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506.

Examples

			Triangle T(n, k) begins:
[0]     1;
[1]     2,      2;
[2]     6,     12,      6;
[3]    20,     60,     60,     20;
[4]    70,    280,    420,    280,     70;
[5]   252,   1260,   2520,   2520,   1260,    252;
[6]   924,   5544,  13860,  18480,  13860,   5544,    924;
[7]  3432,  24024,  72072, 120120, 120120,  72072,  24024,   3432;
[8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870;
		

Crossrefs

cf. A000984, A059304 (row sums, see also A343842), A265609 (rising factorial).
Cf. A003506, A173018 (Eulerian numbers), A000108, A000897 (central terms).

Programs

  • Maple
    A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!):
    for n from 0 to 8 do seq(A356546(n, k), k=0..n) od;
  • Mathematica
    T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* Michael Somos, Aug 18 2022 *)
  • PARI
    {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* Michael Somos, Aug 18 2022 */
  • SageMath
    def A356546(n, k):
        return rising_factorial(n+1,n) // (factorial(k) * factorial(n-k))
    for n in range(9): print([A356546(n, k) for k in range(n+1)])
    

Formula

Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2).
G.f.: 1/sqrt(1 - 4*x*(y + 1)). - Vladimir Kruchinin, Feb 15 2023

A360238 a(n) = [y^n*x^n/n] log( Sum_{m>=0} (m + y)^(2*m) * x^m ) for n >= 1.

Original entry on oeis.org

2, 42, 1376, 60934, 3377252, 224036904, 17282039280, 1519096411230, 149867251224092, 16398595767212452, 1971137737765484444, 258215735255164847944, 36617351885600586385222, 5588967440618883091216208, 913592455995572681826313856, 159241707066923571547572653630
Offset: 1

Views

Author

Paul D. Hanna, Feb 11 2023

Keywords

Comments

Related sequence: A000984(n) = binomial(2*n,n) = [y^n*x^n/n] log( Sum_{m>=0} (1 + y)^(2*m) * x^m ) for n >= 1.

Examples

			L.g.f.: A(x) = 2*x + 42*x^2/2 + 1376*x^3/3 + 60934*x^4/4 + 3377252*x^5/5 + 224036904*x^6/6 + 17282039280*x^7/7 + 1519096411230*x^8/8 + ...
a(n) equals the coefficient of y^n*x^n/n in the logarithmic series:
log( Sum_{m>=0} (m + y)^(2*m) * x^m ) = (y^2 + 2*y + 1)*x + (y^4 + 12*y^3 + 42*y^2 + 60*y + 31)*x^2/2 + (y^6 + 30*y^5 + 297*y^4 + 1376*y^3 + 3348*y^2 + 4188*y + 2140)*x^3/3 + (y^8 + 56*y^7 + 1100*y^6 + 10792*y^5 + 60934*y^4 + 209464*y^3 + 436692*y^2 + 510952*y + 258779)*x^4/4 + (y^10 + 90*y^9 + 2945*y^8 + 49960*y^7 + 510160*y^6 + 3377252*y^5 + 14971780*y^4 + 44457000*y^3 + 85336175*y^2 + 96141170*y + 48446971)*x^5/5 + (y^12 + 132*y^11 + 6486*y^10 + 169236*y^9 + 2730921*y^8 + 29547696*y^7 + 224036904*y^6 + 1214958240*y^5 + 4717830978*y^4 + 12868488144*y^3 + 23497266672*y^2 + 25858665696*y + 12994749280)*x^6/6 + ...
Exponentiation yields the g.f. of A360239:
exp(A(x)) = 1 + 2*x + 23*x^2 + 502*x^3 + 16414*x^4 + 716936*x^5 + 39167817*x^6 + 2567058766*x^7 + 196159319943*x^8 + ... + A360239(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(2*m) *x^m ) +x*O(x^n) ), n, x), n, y)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ (1 - exp(-1)/4) * 2^(2*n) * n^(n + 1/2) / sqrt(Pi). - Vaclav Kotesovec, Feb 12 2023

A386843 a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 6, 39, 268, 1905, 13842, 102123, 761880, 5732325, 43417630, 330620895, 2528772132, 19412942809, 149497184298, 1154365194195, 8934458916912, 69291946278861, 538372925816886, 4189702003359687, 32651982699233340, 254800541773725633, 1990683254889381954
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(2*n+2)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(2*n+2,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(n+k,k).

A386918 a(n) = 2^n * binomial(4*n,n).

Original entry on oeis.org

1, 8, 112, 1760, 29120, 496128, 8614144, 151557120, 2692684800, 48201359360, 868004380672, 15706806542336, 285362317180928, 5202031080243200, 95104728494899200, 1743063914667048960, 32016101348447354880, 589188508080622534656, 10861173739509105295360
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [2^n * Binomial(4*n,n): n in [0..26]]; // Vincenzo Librandi, Aug 11 2025
  • Mathematica
    Table[2^n*Binomial[4*n,n],{n,0,30}] (* Vincenzo Librandi, Aug 11 2025 *)
  • PARI
    a(n) = 2^n*binomial(4*n, n);
    

Formula

a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(4*n)/(1-x)^(3*n+1).
a(n) = [x^n] 1/(1-2*x)^(3*n+1).
a(n) = [x^n] (1+2*x)^(4*n).

A126936 Coefficients of a polynomial representation of the integral of 1/(x^4 + 2*a*x^2 + 1)^(n+1) from x = 0 to infinity.

Original entry on oeis.org

1, 6, 4, 42, 60, 24, 308, 688, 560, 160, 2310, 7080, 8760, 5040, 1120, 17556, 68712, 114576, 99456, 44352, 8064, 134596, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1038312, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2007

Keywords

Comments

The integral N(a;n) = Integral_{x=0..infinity} 1/(x^4 + 2*a*x^2 + 1)^(n+1) has a polynomial representation P_n(a) = 2^(n + 3/2) * (a+1)^(n + 1/2) * N(a;n) / Pi (known as the Boros-Moll polynomial). The table contains the coefficients T(n,l) of P_n(a) = 2^(-2*n)*Sum_{l=0..n} T(n,l)*a^l in row n and column l (with n >= 0 and 0 <= l <= n).

Examples

			The table T(n,l) (with rows n >= 0 and columns l = 0..n) starts:
      1;
      6,     4;
     42,    60,     24;
    308,   688,    560,   160;
   2310,  7080,   8760,  5040,  1120;
  17556, 68712, 114576, 99456, 44352, 8064;
  ...
For n = 2, N(a;2) = Integral_{x=0..oo} dx/(x^4 + 2*a*x + 1)^3 = 2^(-2*2)*(Sum_{l=0..2} T(2,l)*a^l) * Pi/(2^(2 + 3/2) * (a + 1)^(2 + 1/2) = (42 + 60*a + 24*a^2) * Pi/(32 * (2*(a+1))^(5/2)) for a > -1. - _Petros Hadjicostas_, May 25 2020
		

Crossrefs

Cf. A002458 (row sums), A004982 (column l=0), A059304 (main diagonal), A067001 (rows reversed), A223549, A223550, A334907.

Programs

  • Maple
    A126936 := proc(m, l)
        add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m):
    end:
    seq(seq(A126936(m,l), l=0..m), m=0..12); # R. J. Mathar, May 25 2020
  • Mathematica
    t[m_, l_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, l, m}]; Table[t[m, l], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Maple, adapted May 2020 *)

Formula

From Petros Hadjicostas, May 25 2020: (Start)
T(n,l) = A067001(n, n-l) = 2^(2*n) * A223549(n,l)/A223550(n,l).
Sum_{l=0..n} T(n,l) = A002458(n) = A334907(n)*2^n/n!.
Bivariate o.g.f.: Sum_{n,l >= 0} T(n,l)*x^n*y^l = sqrt((1 + y)/(1 - 8*x*(1 + y))/(y + sqrt(1 - 8*x*(1 + y)))). (End)

Extensions

Corrected by Petros Hadjicostas, May 23 2020

A098580 Expansion of (sqrt(1-8*x)-4*x)/sqrt(1-8*x).

Original entry on oeis.org

1, -4, -16, -96, -640, -4480, -32256, -236544, -1757184, -13178880, -99573760, -756760576, -5778898944, -44304891904, -340806860800, -2629081497600, -20331563581440, -157569617756160, -1223481737871360, -9515969072332800, -74124390668697600
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Cf. A059304.

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((sqrt(1-8*x)-4*x)/sqrt(1-8*x))) // G. C. Greubel, Feb 03 2018
  • Mathematica
    CoefficientList[Series[(Sqrt[1-8x]-4x)/Sqrt[1-8x],{x,0,20}],x] (* Harvey P. Dale, May 06 2017 *)
  • PARI
    x='x+O('x^30); Vec((sqrt(1-8*x)-4*x)/sqrt(1-8*x)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: 1-4*x/sqrt(1-8*x).
a(0)=1, a(n) = -2^(n+1)*(2*(n-1))!/(n-1)!^2.
D-finite with recurrence: (n-1)*a(n) +4*(3-2*n)*a(n-1)=0. - R. J. Mathar, Sep 26 2012

A103973 Expansion of (sqrt(1-8*x^2)+8*x^2+2*x-1)/(2*x*sqrt(1-8*x^2)).

Original entry on oeis.org

1, 2, 4, 4, 24, 16, 160, 80, 1120, 448, 8064, 2688, 59136, 16896, 439296, 109824, 3294720, 732160, 24893440, 4978688, 189190144, 34398208, 1444724736, 240787456, 11076222976, 1704034304, 85201715200, 12171673600, 657270374400
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Crossrefs

Formula

G.f.: 1/sqrt(1-8*x^2)+(1-sqrt(1-8*x^2))/(2*x).
a(n) = sum{k=0..floor(n/2), 2^(n-k) * A000108(k) * C(k+1, n-k)}.
Conjecture D-finite with recurrence: 11*n*(n+1)*a(n)+4*n*(4*n+1)*a(n-1) +8*(27-11*n^2)*a(n-2) -32*(4*n+9)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 09 2012
a(n) ~ 2^((3*n + 1)/2) / sqrt(Pi*n) if n is even and a(n) ~ 2^((3*n + 2)/2) / (sqrt(Pi)*n^(3/2)) if n is odd. - Vaclav Kotesovec, Nov 19 2021

A103978 Expansion of (sqrt(1-12*x^2)+12*x^2+2*x-1)/(2*x*sqrt(1-12*x^2)).

Original entry on oeis.org

1, 3, 6, 9, 54, 54, 540, 405, 5670, 3402, 61236, 30618, 673596, 288684, 7505784, 2814669, 84440070, 28146690, 956987460, 287096238, 10909657044, 2975361012, 124965162504, 31241290626, 1437099368796, 331638315876, 16581915793800
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Crossrefs

Programs

  • Maple
    rec:= -(n+1)*a(n)+2*(n-1)*a(n-1)+12*(2*n-3)*a(n-2)+24*(2-n)*a(n-3)+144*(4-n)*a(n-4):
    f:= gfun:-rectoproc({rec=0,a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 9},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Sep 13 2020
  • Mathematica
    CoefficientList[Series[(Sqrt[1-12x^2]+12x^2+2x-1)/(2x Sqrt[1-12x^2]),{x,0,30}],x] (* Harvey P. Dale, Aug 06 2022 *)

Formula

G.f.: 1/sqrt(1-12*x^2)+(1-sqrt(1-12*x^2))/(2*x).
a(n) = sum{k=0..floor(n/2), 3^(n-k) * A000108(k) * C(k+1, n-k)}.
D-finite with recurrence: -(n+1)*a(n)+2*(n-1)*a(n-1) +12*(2n-3)*a(n-2) +24(2-n)*a(n-3) + 144*(4-n)*a(n-4)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ 2^(n + 1/2) * 3^(n/2) / sqrt(Pi*n) if n is even and a(n) ~ 2^(n + 1/2) * 3^((n+1)/2) / (sqrt(Pi) * n^(3/2)) if n is odd. - Vaclav Kotesovec, Nov 19 2021

A343842 Series expansion of 1/sqrt(8*x^2 + 1), even powers only.

Original entry on oeis.org

1, -4, 24, -160, 1120, -8064, 59136, -439296, 3294720, -24893440, 189190144, -1444724736, 11076222976, -85201715200, 657270374400, -5082890895360, 39392404439040, -305870434467840, 2378992268083200, -18531097667174400, 144542561803960320, -1128808577897594880
Offset: 0

Views

Author

Peter Luschny, May 04 2021

Keywords

Comments

Essentially the inverse binomial convolution of the Delannoy numbers.

Crossrefs

Signed version of A059304.

Programs

  • Maple
    gf := 1/sqrt(8*x^2 + 1): ser := series(gf, x, 32):
    seq(coeff(ser, x, 2*n), n = 0..21);
  • Mathematica
    Take[CoefficientList[Series[1/Sqrt[8*x^2 + 1], {x, 0, 42}], x], {1, -1, 2}] (* Amiram Eldar, May 05 2021 *)
  • PARI
    my(x='x+O('x^25)); Vec(1/sqrt(8*x + 1)) \\ Michel Marcus, May 04 2021

Formula

a(n) = n! * [x^n] BesselJ(0, sqrt(8)*x).
D-finite with recurrence a(n) = 4*(1 - 2*n)*a(n - 1) / n for n >= 2.
a(n) = A(2*n) where A(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A008288(n, k).
Previous Showing 21-30 of 34 results. Next