cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A027555 Triangle of binomial coefficients C(-n,k).

Original entry on oeis.org

1, 1, -1, 1, -2, 3, 1, -3, 6, -10, 1, -4, 10, -20, 35, 1, -5, 15, -35, 70, -126, 1, -6, 21, -56, 126, -252, 462, 1, -7, 28, -84, 210, -462, 924, -1716, 1, -8, 36, -120, 330, -792, 1716, -3432, 6435, 1, -9, 45, -165, 495, -1287, 3003, -6435, 12870, -24310, 1, -10, 55, -220, 715, -2002, 5005, -11440, 24310, -48620, 92378
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
  1;
  1, -1;
  1, -2,  3;
  1, -3,  6, -10;
  1, -4, 10, -20, 35;
  1, -5, 15, -35, 70, -126;
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 164.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 2.

Crossrefs

For the unsigned triangle see A059481.

Programs

  • Magma
    /* As triangle */ [[Binomial(-n, k): k in [0..n]]: n in [0..11]]; // G. C. Greubel, Nov 21 2017
    
  • Maple
    A027555 := proc(n,k)
        (-1)^k*binomial(n+k-1,k) ;
    end proc:
    seq(seq(A027555(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    Flatten[Table[Binomial[-n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Apr 30 2012 *)
  • PARI
    T(n,k)=binomial(-n,k) \\ Charles R Greathouse IV, Feb 06 2017
    
  • SageMath
    def T(n,k):
        return (-1)^k * rising_factorial(n, k) // factorial(k)
    for n in range(9):
        print([T(n, k) for k in range(n+1)])  # Peter Luschny, Nov 24 2023

Formula

T(n,k) = binomial(-n,k) = (-1)^k*binomial(n+k-1,k). - R. J. Mathar, Feb 06 2015
T(n, k) = (-1)^k * RisingFactorial(n, k) / k!. - Peter Luschny, Nov 24 2023

A343658 Array read by antidiagonals where A(n,k) is the number of ways to choose a multiset of k divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 10, 2, 1, 1, 8, 7, 21, 5, 20, 3, 4, 1, 1, 9, 8, 28, 6, 35, 4, 10, 3, 1, 1, 10, 9, 36, 7, 56, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 84, 6, 35, 10, 10, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Comments

First differs from A343656 at A(4,2) = 6, A343656(4,2) = 5.
As a triangle, T(n,k) = number of ways to choose a multiset of n - k divisors of k.

Examples

			Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=1:  1   1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8   9
  n=3:  1   2   3   4   5   6   7   8   9
  n=4:  1   3   6  10  15  21  28  36  45
  n=5:  1   2   3   4   5   6   7   8   9
  n=6:  1   4  10  20  35  56  84 120 165
  n=7:  1   2   3   4   5   6   7   8   9
  n=8:  1   4  10  20  35  56  84 120 165
  n=9:  1   3   6  10  15  21  28  36  45
Triangle begins:
   1
   1   1
   1   2   1
   1   3   2   1
   1   4   3   3   1
   1   5   4   6   2   1
   1   6   5  10   3   4   1
   1   7   6  15   4  10   2   1
   1   8   7  21   5  20   3   4   1
   1   9   8  28   6  35   4  10   3   1
   1  10   9  36   7  56   5  20   6   4   1
   1  11  10  45   8  84   6  35  10  10   2   1
For example, row n = 6 counts the following multisets:
  {1,1,1,1,1}  {1,1,1,1}  {1,1,1}  {1,1}  {1}  {}
               {1,1,1,2}  {1,1,3}  {1,2}  {5}
               {1,1,2,2}  {1,3,3}  {1,4}
               {1,2,2,2}  {3,3,3}  {2,2}
               {2,2,2,2}           {2,4}
                                   {4,4}
Note that for n = 6, k = 4 in the triangle, the two multisets {1,4} and {2,2} represent the same divisor 4, so they are only counted once under A343656(4,2) = 5.
		

Crossrefs

Row k = 1 of the array is A000005.
Column n = 4 of the array is A000217.
Column n = 6 of the array is A000292.
Row k = 2 of the array is A184389.
The distinct products of these multisets are counted by A343656.
Antidiagonal sums of the array (or row sums of the triangle) are A343661.
A000312 = n^n.
A009998(n,k) = n^k (as an array, offset 1).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,k],n-k],{n,10},{k,n}]
  • PARI
    A(n,k) = binomial(numdiv(n) + k - 1, k)
    { for(n=1, 9, for(k=0, 8, print1(A(n,k), ", ")); print ) } \\ Andrew Howroyd, Jan 11 2024

Formula

A(n,k) = ((A000005(n), k)) = A007318(A000005(n) + k - 1, k).
T(n,k) = ((A000005(k), n - k)) = A007318(A000005(k) + n - k - 1, n - k).

A049017 Expansion of 1/((1-x)^7 - x^7).

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975, 9714753412, 19818498700, 40199107690
Offset: 0

Views

Author

Keywords

Comments

Differs for n >= 7 (1717 vs. 1716) from A000579(n+6) = binomial(n+6,6); see also row 6 of A027555, A059481 and A213808. - M. F. Hasler, Mar 05 2017

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), this sequence (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^7-x^7),{x,0,30}],x]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    Vec(1/((1-x)^7-x^7)+O(x^99)) \\ M. F. Hasler, Mar 05 2017
    
  • SageMath
    def A049017_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^7 - x^7) ).list()
    A049017_list(40) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^7 - x^7) = 1/((1-2*x)*(1-5*x+11*x^2-13*x^3+9*x^4-3*x^5+x^6)).

A123160 Triangle read by rows: T(n,k) = n!*(n+k-1)!/((n-k)!*(n-1)!*(k!)^2) for 0 <= k <= n, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 18, 10, 1, 16, 60, 80, 35, 1, 25, 150, 350, 350, 126, 1, 36, 315, 1120, 1890, 1512, 462, 1, 49, 588, 2940, 7350, 9702, 6468, 1716, 1, 64, 1008, 6720, 23100, 44352, 48048, 27456, 6435, 1, 81, 1620, 13860, 62370, 162162, 252252, 231660, 115830, 24310
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Comments

T(n,k) is also the number of order-preserving partial transformations (of an n-element chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Aug 25 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  9,  18,  10;
  1, 16,  60,  80,  35;
  1, 25, 150, 350, 350, 126;
  ...
		

References

  • Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965 pages 296 and 305

Crossrefs

Programs

  • Magma
    [Binomial(n,k)*Binomial(n+k-1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2022
    
  • Maple
    T:=proc(n,k) if k=0 and n=0 then 1 elif k<=n then n!*(n+k-1)!/(n-k)!/(n-1)!/(k!)^2 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, m_]= If [n==m==0, 1, n!*(n+m-1)!/((n-m)!*(n-1)!(m!)^2)];
    Table[T[n, m], {n,0,10}, {m,0,n}]//Flatten
    max = 9; s = (x+1)/(2*Sqrt[(1-x)^2-4*y])+1/2 + O[x]^(max+2) + O[y]^(max+2); T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 18 2015, after Vladimir Kruchinin *)
  • SageMath
    def A123160(n,k): return binomial(n, k)*binomial(n+k-1, k)
    flatten([[A123160(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2022

Formula

T(n, m) = n!*(n + m - 1)!/((n - m)!*(n - 1)!(m!)^2), with T(0, 0) = 1.
T(n, k) = binomial(n,k)*binomial(n+k-1,k). The row polynomials (except the first) are (1+x)*P(n,0,1,2x+1), where P(n,a,b,x) denotes the Jacobi polynomial. The columns of this triangle give the diagonals of A122899. - Peter Bala, Jan 24 2008
T(n, k) = binomial(n,k)*(n+k-1)!/((n-1)!*k!).
T(n, k)= binomial(n,k)*binomial(n+k-1,n-1). - Abdullahi Umar, Aug 25 2008
G.f.: (x+1)/(2*sqrt((1-x)^2-4*y)) + 1/2. - Vladimir Kruchinin, Jun 16 2015
From _Peter Bala, Jul 20 2015: (Start)
O.g.f. (1 + x)/( 2*sqrt((1 - x)^2 - 4*x*y) ) + 1/2 = 1 + (1 + y)*x + (1 + 4*y + 3*y^2)*x^2 + ....
For n >= 1, the n-th row polynomial R(n,y) = (1 + y)*r(n-1,y), where r(n,y) is the n-th row polynomial of A178301.
exp( Sum_{n >= 1} R(n,y)*x^n/n ) = 1 + (1 + y)*x + (1 + 3*y + 2*y^2)*x^2 + ... is the o.g.f for A088617. (End)
From G. C. Greubel, Jun 19 2022: (Start)
T(n, n) = A088218(n).
T(n, n-1) = A037965(n).
T(n, n-2) = A085373(n-2).
Sum_{k=0..n} T(n, k) = A123164(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A005773(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 26 2006 and Jul 03 2008

A343657 Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Examples

			The a(7) = 27 divisors:
  1  32  81  64  25  6  1
     16  27  32  5   3
     8   9   16  1   2
     4   3   8       1
     2   1   4
     1       2
             1
		

Crossrefs

Antidiagonal row sums (row sums of the triangle) of A343656.
Dominated by A343661.
A000005(n) counts divisors of n.
A000312(n) = n^n.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.

Programs

  • Mathematica
    Total/@Table[DivisorSigma[0,k^(n-k)],{n,30},{k,n}]

Formula

a(n) = Sum_{k=1..n} A000005(k^(n-k)).

A343935 Number of ways to choose a multiset of n divisors of n.

Original entry on oeis.org

1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 6 multisets:
  {1}  {1,1}  {1,1,1}  {1,1,1,1}  {1,1,1,1,1}
       {1,2}  {1,1,3}  {1,1,1,2}  {1,1,1,1,5}
       {2,2}  {1,3,3}  {1,1,1,4}  {1,1,1,5,5}
              {3,3,3}  {1,1,2,2}  {1,1,5,5,5}
                       {1,1,2,4}  {1,5,5,5,5}
                       {1,1,4,4}  {5,5,5,5,5}
                       {1,2,2,2}
                       {1,2,2,4}
                       {1,2,4,4}
                       {1,4,4,4}
                       {2,2,2,2}
                       {2,2,2,4}
                       {2,2,4,4}
                       {2,4,4,4}
                       {4,4,4,4}
		

Crossrefs

Diagonal n = k of A343658.
Choosing n divisors of n - 1 gives A343936.
The version for chains of divisors is A343939.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,n],n],{n,25}]
  • Python
    from math import comb
    from sympy import divisor_count
    def A343935(n): return comb(divisor_count(n)+n-1,n) # Chai Wah Wu, Jul 05 2024

Formula

a(n) = ((sigma(n), n)) = binomial(sigma(n) + n - 1, n) where sigma = A000005 and binomial = A007318.

A213745 Triangle of numbers C^(6)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 6 appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1709, 1, 8, 36, 120, 330, 792, 1716, 3424, 6371, 1, 9, 45, 165, 495, 1287, 3003, 6426, 12789, 23905, 1, 10
Offset: 0

Views

Author

Keywords

Comments

For k<=5, the triangle coincides with triangle A213744.
We have over columns of the triangle: T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A000389(n) for n>=9, T(n,6)=A000579(n) for n>=11, T(n,7)=A063267 for n>=5, T(n,8)=A063417 for n>=6, T(n,9)=A063418 for n>=7.

Examples

			Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....35
.5..|..1.....5....15....35....70....126
.6..|..1.....6....21....56...126....252...462
.7..|..1.....7....28....84...210....462...924....1709
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[7] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(6)(n,k)=sum{r=0,...,floor(k/7)}(-1)^r*C(n,r)*C(n-7*r+k-1, n-1).
A generalization. The numbers C^(t)(n,k) of combinations with repetitions from n different elements over k, for each of them not more than t>=1 appearances allowed, are enumerated by the formula:
C^(t)(n,k)=sum{r=0,...,floor(k/(t+1))}(-1)^r*C(n,r)*C(n-(t+1)*r+k-1, n-1).
In case t=1, it is binomial coefficient C^(t)(n,k)=C(n,k), and we have the combinatorial identity: sum{r=0,...,floor(k/2)}(-1)^r*C(n,r)*C(n-2*r+k-1, n-1)=C(n,k). On the other hand, if t=n, then r=0, and for the corresponding numbers of combinations with repetitions without a restriction on appearances of elements we obtain a well known formula C(n+k-1, n-1) (cf. triangle A059481).
In addition, note that, if k<=t, then C^(t)(n,k)=C(n+k-1, n-1). Therefore, triangle {C^(t+1)(n,k)} coincides with the previous triangle {C^(t)(n,k)} for k<=t.

A343661 Sum of numbers of y-multisets of divisors of x for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 46, 70, 105, 155, 223, 316, 443, 619, 865, 1210, 1690, 2354, 3263, 4497, 6157, 8368, 11280, 15078, 19989, 26296, 34356, 44626, 57693, 74321, 95503, 122535, 157101, 201377, 258155, 330994, 424398, 544035, 696995, 892104, 1140298, 1455080
Offset: 1

Views

Author

Gus Wiseman, Apr 30 2021

Keywords

Examples

			The a(5) = 12 multisets of divisors:
  {1,1,1,1}  {1,1,1}  {1,1}  {1}  {}
             {1,1,2}  {1,3}  {2}
             {1,2,2}  {3,3}  {4}
             {2,2,2}
		

Crossrefs

Antidiagonal sums of the array A343658 (or row sums of the triangle).
Dominates A343657.
A000005 counts divisors.
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.
A343656 counts divisors of powers.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[Sum[multchoo[DivisorSigma[0,k],n-k],{k,n}],{n,10}]

Formula

a(n) = Sum_{k=1..n} binomial(sigma(k) + n - k - 1, n - k).

A165257 Triangle in which n-th row is binomial(n+k-1,k), for column k=1..n.

Original entry on oeis.org

1, 2, 3, 3, 6, 10, 4, 10, 20, 35, 5, 15, 35, 70, 126, 6, 21, 56, 126, 252, 462, 7, 28, 84, 210, 462, 924, 1716, 8, 36, 120, 330, 792, 1716, 3432, 6435, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310
Offset: 1

Views

Author

Daniel McLaury (daniel.mclaury(AT)gmail.com), Sep 11 2009

Keywords

Comments

T(n,k) is the number of non-descending sequences with length k and last number is less or equal to n. T(n,k) is also the number of integer partitions (of any positive integer) with length k and largest part is less or equal to n. - Zlatko Damijanic, Dec 06 2024

Examples

			1;
2, 3;
3, 6, 10;
4, 10, 20, 35;
5, 15, 35, 70, 126;
6, 21, 56, 126, 252, 462;
7, 28, 84, 210, 462, 924, 1716;
		

Crossrefs

A059481 with the first column (k = 0) removed.
Cf. A030662 (row sums), A001700 (diagonal).

Programs

  • Mathematica
    Table[Binomial[n+k-1,k],{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n, print1( binomial(n+k-1, k), ", ");); print(););} \\ Michel Marcus, Jun 12 2013

A328745 Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(-s))^p.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 4, 6, 10, 11, 9, 13, 14, 15, 5, 17, 12, 19, 15, 21, 22, 23, 12, 15, 26, 10, 21, 29, 30, 31, 6, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 33, 30, 46, 47, 15, 28, 30, 51, 39, 53, 20, 55, 28, 57, 58, 59, 45, 61, 62, 42, 7, 65, 66, 67, 51, 69, 70, 71, 24, 73, 74, 45
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 26 2019

Keywords

Comments

Number of ways to factor n into 2 kinds of 2, 3 kinds of 3, 5 kinds of 5, ... , p kinds of p.

Crossrefs

Programs

  • Maple
    a:= n-> mul(binomial(i[1]+i[2]-1, i[2]), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 26 2019
  • Mathematica
    a[n_] := Times @@ (Binomial[#[[1]] + #[[2]] - 1, #[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 75}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)^p)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021

Formula

If n = Product (p_j^k_j) then a(n) = Product (binomial(p_j + k_j - 1, k_j)).
Conjecture: Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.40373... - Vaclav Kotesovec, Mar 28 2025
Previous Showing 11-20 of 27 results. Next