cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 75 results. Next

A329975 Beatty sequence for 1 + x + x^2, where x is the real solution of 1/x + 1/(1+x+x^2) = 1.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 208, 212, 216, 220, 224, 228, 232
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2020

Keywords

Comments

Let x be the real solution of 1/x + 1/(1+x+x^2) = 1. Then (floor(n*x)) and (floor(n*(x^2 + x + 1))) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.

Crossrefs

Cf. A329825, A060006, A329974 (complement).

Programs

  • Mathematica
    Solve[1/x + 1/(1 + x + x^2) == 1, x]
    u = 1/3 (27/2 - (3 Sqrt[69])/2)^(1/3) + (1/2 (9 + Sqrt[69]))^(1/3)/3^(2/3);
    u1 = N[u, 150]
    RealDigits[u1, 10][[1]]  (* A060006 *)
    Table[Floor[n*u], {n, 1, 50}]              (* A329974 *)
    Table[Floor[n*(1 + u + u^2)], {n, 1, 50}]  (* A329975 *)
    Plot[1/x + 1/(1 + x + x^2) - 1, {x, -2, 2}]

Formula

a(n) = floor(n*(1+x+x^2)), where x = 1.324717... is the constant in A060006.

A347177 Decimal expansion of real part of (i + (i + (i + (i + ...)^(1/3))^(1/3))^(1/3))^(1/3), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 6, 1, 5, 4, 1, 3, 9, 9, 9, 9, 7, 2, 5, 1, 9, 3, 6, 0, 8, 7, 9, 1, 7, 6, 8, 7, 2, 4, 7, 1, 7, 4, 0, 7, 4, 8, 4, 3, 1, 4, 7, 2, 5, 8, 0, 2, 1, 5, 1, 4, 2, 9, 0, 6, 3, 6, 1, 6, 6, 2, 1, 4, 1, 3, 8, 4, 9, 7, 1, 6, 8, 8, 9, 5, 7, 7, 8, 4, 6, 8, 9, 7, 9, 4, 7, 6, 7, 2, 2, 2, 3, 9, 6, 0, 7, 3, 0, 8, 8, 9, 9, 1, 5, 0, 8, 7, 0, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Comments

This is the sum of the imaginary parts of the complex roots of the cubic equation 8*r^3 + 2*r - 1 = 0 , and its real solution is A347178. - Gerry Martens, Apr 02 2024

Examples

			1.1615413999972519360879176872471740748431...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/12) 2^(2/3) 3^(5/6) ((Sqrt[93] - 9)^(1/3) + (9 + Sqrt[93])^(1/3)), 10, 110][[1]]
  • PARI
    (1/12)*2^(2/3)*3^(5/6)*((sqrt(93) - 9)^(1/3) + (9 + sqrt(93))^(1/3)) \\ Michel Marcus, Aug 21 2021
    
  • PARI
    2*imag(polroots(8*x^3 + 2*x - 1)[3]) \\ Gerry Martens, Apr 02 2024

Formula

Equals cosh(asinh(3*sqrt(3)/2)/3). - Gerry Martens, Apr 02 2024

A018243 Inverse Euler transform of A000931.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, 28, 34, 45, 56, 73, 92, 120, 151, 197, 250, 324, 414, 537, 687, 892, 1145, 1484, 1911, 2479, 3196, 4148, 5359, 6954, 9000, 11687, 15140, 19672, 25516, 33166, 43065, 56010, 72784, 94716, 123185, 160380, 208740, 271913, 354123, 461529, 601436, 784209, 1022505, 1333856
Offset: 1

Views

Author

Keywords

Examples

			x^3 + x^5 + x^7 + x^8 + x^9 + x^10 + 2*x^11 + 2*x^12 + 3*x^13 + 3*x^14 + ...
		

Crossrefs

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000931):
    seq(a(n), n = 1..65); # Peter Luschny, Nov 21 2022
  • Mathematica
    a[n_] := (1/n)*Sum[ MoebiusMu[n/d]*Floor[ Re[ N[ RootSum[ -1-#+#^3&, #^d& ]]]] , {d, Divisors[n]}]; a[2]=0; Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 05 2012, after Michael Somos *)
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z**2 + z**3))/(1 - z**2)
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 25 2020

Formula

a(n) = A113788(n) unless n=2. - Michael Somos, Apr 06 2012
Reciprocal of g.f. of A000931 = (1 - x^2 - x^3) / (1 - x^2) = 1 - x^3 - x^5 - x^7 - x^9 - ... = Product_{k>0} (1 - x^k)^a(n). - Michael Somos, Jul 17 2012
a(n) ~ A060006^n / n. - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from Joerg Arndt, Jul 18 2012

A052954 Expansion of (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)).

Original entry on oeis.org

2, 1, 2, 2, 2, 3, 3, 4, 5, 6, 8, 10, 13, 17, 22, 29, 38, 50, 66, 87, 115, 152, 201, 266, 352, 466, 617, 817, 1082, 1433, 1898, 2514, 3330, 4411, 5843, 7740, 10253, 13582, 17992, 23834, 31573, 41825, 55406, 73397, 97230, 128802, 170626, 226031, 299427
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n > 2, a(n) = floor(sqrt(a(n-3)*a(n-2) + a(n-2)*a(n-1) + a(n-1)*a(n-3))). - Gerald McGarvey, Sep 19 2004

Crossrefs

Programs

  • GAP
    a:=[2,1,2,2];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Oct 22 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Prod(Union(Prod(Z,Z),Z),Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 22 2019
  • Mathematica
    LinearRecurrence[{1,1,0,-1}, {2,1,2,2}, 40] (* G. C. Greubel, Oct 22 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))) \\ G. C. Greubel, Oct 22 2019
    
  • Sage
    def A052954_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))).list()
    A052954_list(40) # G. C. Greubel, Oct 22 2019
    

Formula

G.f.: (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)).
a(n) = a(n-2) + a(n-3) - 1.
a(n) = 1 + Sum_{alpha=RootOf(-1+z^2+z^3)} (1/23)*(3 +7*alpha -2*alpha^2) * alpha^(-1-n).
lim n->inf a(n)/a(n-1) = positive root of 1+x-x^3 (smallest Pisot-Vijayaraghavan number, A060006) - Gerald McGarvey, Sep 19 2004
a(n) = 2*A023434(n+1) - A023434(n) - A023434(n-2) - A023434(n-3). - R. J. Mathar, Nov 28 2011
a(n) = 1 + A000931(n+3). - G. C. Greubel, Oct 22 2019

Extensions

More terms from James Sellers, Jun 05 2000

A084252 A measure of how close r^n is to an integer where r is the real root of x^3-x-1, i.e.. r = (1/2 + sqrt(23/108))^(1/3) + (1/2 - sqrt(23/108))^(1/3) = 1.3247.... (Higher absolute value of a(n) means closer, negative means less than closest integer.)

Original entry on oeis.org

3, -4, 3, 13, 13, 2, 6, 2, -2, -3, 21, 5, -3, 4, -10, -18, 7, -6, 10, -139, -16, 11, -14, 39, 54, -23, 23, -39, 3479, 53, -40, 52, -158, -165, 78, -81, 148, 2429, -177, 140, -191, 657, 517, -269, 289, -563, -3923, 595, -492, 702, -2833, -1645, 933, -1041, 2156, 9021, -2012, 1740, -2590, 12872, 5304, -3242, 3756
Offset: 1

Views

Author

Henry Bottomley, May 22 2003

Keywords

Examples

			a(4)=13 since r^4 = 3.0795956..., 1/(3.0795956...-round(3.0795956...)) = 1/0.0795956... = 12.5635... and round(12.5635...) = 13.
		

Crossrefs

Positive values when n is in A051016 and negative when n is in A051017.

Formula

a(n) = round(1/(r^n - round(r^n))).

A112639 a(n) = floor(r^n) where r is the smallest Pisot number (real root r=1.3247179... of x^3-x-1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 38, 51, 67, 89, 119, 157, 209, 276, 366, 486, 643, 853, 1130, 1496, 1983, 2626, 3480, 4610, 6106, 8090, 10716, 14196, 18807, 24913, 33004, 43721, 57917, 76725, 101638, 134643, 178364, 236281, 313007, 414645
Offset: 0

Views

Author

Roger L. Bagula, Mar 31 2006

Keywords

Crossrefs

Cf. A060006 (decimal expansion of r=1.32471795724475...).
Cf. A205579 (definition using round() instead of floor()).

Programs

  • Mathematica
    r = Solve[x^3 - x - 1 == 0, x][[1,1,2]]; Table[Floor[r^n], {n, 0, 50}] (* T. D. Noe, Jan 30 2012 *)
  • PARI
    default(realprecision,110);
    default(format,"g.15");
    r=real(polroots(x^3-x-1)[1])
    v=vector(66, n, floor(r^(n-1)) )  /* Joerg Arndt, Jan 29 2012 */

Formula

a(n) = floor(((1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3))^n). - Jwalin Bhatt, May 06 2025

Extensions

Completely edited by Joerg Arndt, Jan 29 2012

A168637 a(n) = a(n-1) + a(n-2) - a(n-4) starting a(0)=0, a(1)=1, a(2)=a(3)=3.

Original entry on oeis.org

0, 1, 3, 3, 6, 8, 11, 16, 21, 29, 39, 52, 70, 93, 124, 165, 219, 291, 386, 512, 679, 900, 1193, 1581, 2095, 2776, 3678, 4873, 6456, 8553, 11331, 15011, 19886, 26344, 34899, 46232, 61245, 81133, 107479, 142380, 188614, 249861, 330996, 438477, 580859, 769475
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

References

  • R. Pallu de la Barriere, Optimal Control Theory, Dover Publications, New York, 1967, pages 339-344

Crossrefs

Cf. A007307 (for a different starting vector of the Mma program).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    [0] cat Coefficients(R!( x*(1+2*x-x^2)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Apr 20 2025
    
  • Mathematica
    LinearRecurrence[{1,1,0,-1},{0,1,3,3},50] (* or *) CoefficientList[ Series[ x*(-1-2x+x^2)/((1-x)(x^3+x^2-1)),{x,0,50}],x] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,1,1]^n*[0;1;3;3])[1,1] \\ Charles R Greathouse IV, Jul 29 2016
    
  • SageMath
    def A168637_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+2*x-x^2)/((1-x)*(1-x^2-x^3)) ).list()
    print(A168637_list(60)) # G. C. Greubel, Apr 20 2025

Formula

Limit_{n -> oo} a(n+1)/a(n) = A060006 (also a limiting value of A000931).
G.f.: x*(1 + 2*x - x^2)/((1-x)*(1 - x^2 - x^3)). [Dec 03 2009]
a(n) = 3*A000931(n+4) + 2*A000931(n+3) - 2. [Dec 03 2009]
a(n) = a(n-2) + a(n-3) + 2. - Greg Dresden, May 18 2020

Extensions

Precise definition and more formulas supplied by the Assoc. Editors of the OEIS, Dec 03 2009

A218197 Decimal expansion of the Perrin argument a (see below).

Original entry on oeis.org

8, 6, 6, 9, 3, 8, 6, 0, 5, 4, 9, 3, 4, 2, 0, 1, 0, 1, 7, 3, 9, 5, 6, 0, 8, 6, 5, 7, 9, 7, 5, 6, 5, 9, 1, 9, 5, 9, 4, 5, 7, 2, 3, 2, 5, 4, 3, 1, 2, 8, 5, 5, 5, 9, 6, 1, 0, 6, 6, 1, 1, 2, 7, 3, 9, 1, 6, 3, 0, 2, 6, 9, 1, 4, 7, 3, 1, 1, 4, 9, 9, 3, 5, 9, 8, 1, 5, 4, 9, 2, 6, 6, 7, 6, 9, 1, 2, 9, 3, 6, 7, 9, 8, 5, 1, 2, 1, 4, 1, 7, 3, 4, 0, 8, 3, 5, 6, 1, 5, 2
Offset: 0

Views

Author

Roman Witula, Oct 23 2012

Keywords

Comments

The Perrin argument a is defined by the decomposition of the known Perrin polynomial: X^3 - X - 1 = (X - t^(-1))*(X - i*sqrt(t)*e^(i*a))*(X + i*sqrt(t)*e^(-i*a)), where t = 0.754877666... (see A075778 and A060006 for the decimal expansions of t and t^(-1) respectively) is the only positive root of the polynomial x^3 + x^2 - 1 and a := arcsin(1/(2*sqrt(t^3))) (the principal value of arc sine is considered here).
The Perrin polynomial is the characteristic polynomial of the Perrin recurrence sequence (see A001608):
A(n) = A(n-2) + A(n-3), with A(0)=3, A(1)=0, and A(2)=2.
The Binet formula of this sequence has the form
A(n) = t^(-n) + i^n * t^(n/2) * (e^(i*(a + Pi)*n) + e^(-i*a*n)) = t^(-n) + 2*(-1)^n*t^(n/2)*cos((a + Pi/2)*n),
which implies the relations
A(2*n) = t^(-2*n) + 2 * (-1)^n * cos(2*a*n) * t^n, and
A(2*n-1) = t^(-2*n+1) + 2 * (-1)^(n-1) * sin((2*n-1)*a) * t^(n - 1/2).
It is proved in the paper of Witula et al. that we have
u + v + w = 0 for the respective complex values of the roots: u in (1 + t^(-1))^(1/3), v in (1 + i*sqrt(t)*e^(i*a))^(1/3) and w in (1 - i*sqrt(t)*e^(-i*a))^(1/3).

Examples

			0.8669386054934201...
		

References

  • R. Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, submitted to Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Mathematica
    ArcSin[1/(2*Root[Function[x, x^3+x^2-1], 1]^(3/2))] // RealDigits[#, 10, 120]& // First (* Jean-François Alcover, Feb 20 2014 *)
  • PARI
    asin(1/2/real(polroots(x^3+x^2-1)[1])^1.5) \\ Charles R Greathouse IV, Dec 11 2013

Formula

Equals arccos((1-A060006)/2)/2. - Gerry Martens, Apr 16 2024

Extensions

a(119) corrected by Sean A. Irvine, Apr 16 2024

A276693 a(n) = a(n-2)*a(n-3) - a(n-1); a(0) = 3, a(1) = 5, a(2) = 7.

Original entry on oeis.org

3, 5, 7, 8, 27, 29, 187, 596, 4827, 106625, 2770267, 511908608, 294867810267, 1417828655948069, 150943952469132130267, 418071880169258361764894156, 214012660834726939177944668730210267, 63105422008735225121538219609433904551328809385
Offset: 0

Views

Author

Keywords

Programs

  • C
    int seq(int n) {int v = 3; if(n <= 2) {v = 3+2*n;} else {v = seq(n-2)*seq(n-3) - seq(n-1);} return v;}
  • Mathematica
    RecurrenceTable[{a[n] ==  a[n-2]*a[n-3]-a[n-1], a[0] == 3,a[1]==5,a[2]==7}, a, {n,0, 17}]
    nxt[{a_,b_,c_}]:={b,c,a*b-c}; NestList[nxt,{3,5,7},20][[All,1]] (* Harvey P. Dale, May 27 2020 *)

Formula

a(n) ~ c^(d^n), where c = 2.46982021132238000769..., d = A060006 = (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3) = 1.32471795724474602596..., real root of the equation d*(d^2-1) = 1. - Vaclav Kotesovec, Oct 04 2016

A296140 Decimal expansion of 1/sqrt(1 + 1/sqrt(2 + 1/sqrt(3 + 1/sqrt(4 + 1/sqrt(5 + ...))))).

Original entry on oeis.org

7, 8, 3, 7, 6, 6, 3, 0, 9, 2, 3, 6, 3, 9, 6, 4, 6, 9, 9, 5, 1, 9, 4, 3, 0, 7, 7, 6, 3, 8, 7, 4, 2, 8, 1, 2, 7, 0, 4, 1, 4, 1, 1, 8, 0, 7, 7, 3, 8, 7, 7, 4, 7, 5, 5, 8, 9, 6, 6, 0, 7, 6, 0, 5, 7, 5, 2, 6, 6, 5, 3, 9, 7, 7, 4, 0, 1, 4, 0, 9, 4, 7, 5, 4, 4, 3, 5, 1, 6, 4, 2, 9, 4, 7, 1, 9, 9, 6, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2017

Keywords

Examples

			0.7837663092363964699519430776387428127041411807738774755...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Fold[1/Sqrt[#1 + #2]&, 0, Range[100, 1, -1]], 10, 100][[1]] (* Jean-François Alcover, Dec 19 2017 *)
Previous Showing 51-60 of 75 results. Next