cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A337762 Number of partitions of the n-th n-gonal number into n-gonal numbers.

Original entry on oeis.org

1, 1, 2, 4, 8, 21, 56, 144, 370, 926, 2275, 5482, 12966, 30124, 68838, 154934, 343756, 752689, 1627701, 3479226, 7355608, 15390682, 31889732, 65465473, 133212912, 268811363, 538119723, 1069051243, 2108416588, 4129355331, 8033439333
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2020

Keywords

Examples

			a(3) = 4 because the third triangular number is 6 and we have [6], [3, 3], [3, 1, 1, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1 - x^(k*((k*(n - 2) - n + 4)/2))), {k, 1, n}], {x, 0, n*(4 - 3*n + n^2)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Sep 19 2020 *)

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} 1 / (1 - x^p(n,k)), where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A004255 n(n+1)(n^2 -3n + 6)/8.

Original entry on oeis.org

1, 3, 9, 25, 60, 126, 238, 414, 675, 1045, 1551, 2223, 3094, 4200, 5580, 7276, 9333, 11799, 14725, 18165, 22176, 26818, 32154, 38250, 45175, 53001, 61803, 71659, 82650, 94860, 108376, 123288, 139689, 157675, 177345, 198801, 222148, 247494, 274950
Offset: 1

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A060354. Equals (1/2) A062026.

Programs

Formula

G.f.: -x*(1-2*x+4*x^2) / (x-1)^5. - Simon Plouffe in his 1992 dissertation.

A292551 Expansion of x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).

Original entry on oeis.org

0, 1, -1, 3, 4, 12, 21, 34, 56, 75, 115, 141, 204, 238, 329, 372, 496, 549, 711, 775, 980, 1056, 1309, 1398, 1704, 1807, 2171, 2289, 2716, 2850, 3345, 3496, 4064, 4233, 4879, 5067, 5796, 6004, 6821, 7050, 7960, 8211, 9219, 9493, 10604, 10902, 12121, 12444, 13776, 14125, 15575
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2017

Keywords

Comments

The n-th generalized n-gonal number (for n >= 5).

Crossrefs

Main diagonal of A303301.

Programs

  • GAP
    List([0..50],n->(2*n^3-2*n^2+(-1)^n*(2*n^2-11*n-6)-5*n+6)/16); # Muniru A Asiru, Aug 08 2018
  • Maple
    a:= n-> (m-> m*((n-2)*m-(n-4))/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 29 2018
  • Mathematica
    CoefficientList[Series[x (1 - 2 x + x^2 + 7 x^3 - x^4)/((1 - x)^4 (1 + x)^3), {x, 0, 50}], x]
    Table[SeriesCoefficient[x (1 + (n - 4) x + x^2)/((1 - x)^3 (1 + x)^2), {x, 0, n}], {n, 0, 50}]
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 1, -1, 3, 4, 12, 21}, 51]
    Table[(2 n^3 - 2 n^2 + (-1)^n (2 n^2 - 11 n - 6) - 5 n + 6)/16, {n, 0, 50}]
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1-2*x+x^2+7*x^3-x^4)/((1-x)^4*(1+x)^3))) \\ Altug Alkan, Sep 18 2017
    

Formula

G.f.: x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).
a(n) = [x^n] x*(1 + (n - 4)*x + x^2)/((1 - x)^3*(1 + x)^2).
E.g.f.: (1/16)*((-6 + 9*x + 2*x^2)*exp(-x) + (6 - 5*x + 4*x^2 + 2*x^3)*exp(x)).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = (2*n^3 - 2*n^2 + (-1)^n*(2*n^2 - 11*n - 6) - 5*n + 6)/16.

A317302 Square array T(n,k) = (n - 2)*(k - 1)*k/2 + k, with n >= 0, k >= 0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, -3, 0, 1, 2, 0, -8, 0, 1, 3, 3, -2, -15, 0, 1, 4, 6, 4, -5, -24, 0, 1, 5, 9, 10, 5, -9, -35, 0, 1, 6, 12, 16, 15, 6, -14, -48, 0, 1, 7, 15, 22, 25, 21, 7, -20, -63, 0, 1, 8, 18, 28, 35, 36, 28, 8, -27, -80, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, -35, -99, 0, 1, 10, 24, 40, 55, 66
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2018

Keywords

Comments

Note that the formula gives several kinds of numbers, for example:
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the nonnegative numbers.
For n >= 3, row n gives the n-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------------
n\k  Numbers       Seq. No.   0   1   2   3   4    5    6    7    8
------------------------------------------------------------------------
0    ............ (A258837):  0,  1,  0, -3, -8, -15, -24, -35, -48, ...
1    ............ (A080956):  0,  1,  1,  0, -2,  -5,  -9, -14, -20, ...
2    Nonnegatives  A001477:   0,  1,  2,  3,  4,   5,   6,   7,   8, ...
3    Triangulars   A000217:   0,  1,  3,  6, 10,  15,  21,  28,  36, ...
4    Squares       A000290:   0,  1,  4,  9, 16,  25,  36,  49,  64, ...
5    Pentagonals   A000326:   0,  1,  5, 12, 22,  35,  51,  70,  92, ...
6    Hexagonals    A000384:   0,  1,  6, 15, 28,  45,  66,  91, 120, ...
7    Heptagonals   A000566:   0,  1,  7, 18, 34,  55,  81, 112, 148, ...
8    Octagonals    A000567:   0,  1,  8, 21, 40,  65,  96, 133, 176, ...
9    9-gonals      A001106:   0,  1,  9, 24, 46,  75, 111, 154, 204, ...
10   10-gonals     A001107:   0,  1, 10, 27, 52,  85, 126, 175, 232, ...
11   11-gonals     A051682:   0,  1, 11, 30, 58,  95, 141, 196, 260, ...
12   12-gonals     A051624:   0,  1, 12, 33, 64, 105, 156, 217, 288, ...
13   13-gonals     A051865:   0,  1, 13, 36, 70, 115, 171, 238, 316, ...
14   14-gonals     A051866:   0,  1, 14, 39, 76, 125, 186, 259, 344, ...
15   15-gonals     A051867:   0,  1, 15, 42, 82, 135, 201, 280, 372, ...
...
		

Crossrefs

Column 0 gives A000004.
Column 1 gives A000012.
Column 2 gives A001477, which coincides with the row numbers.
Main diagonal gives A060354.
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the same as column 2.
For n >= 3, row n gives the n-gonal numbers: A000217 (n=3), A000290 (n=4), A000326 (n=5), A000384 (n=6), A000566 (n=7), A000567 (n=8), A001106 (n=9), A001107 (n=10), A051682 (n=11), A051624 (n=12), A051865 (n=13), A051866 (n=14), A051867 (n=15), A051868 (n=16), A051869 (n=17), A051870 (n=18), A051871 (n=19), A051872 (n=20), A051873 (n=21), A051874 (n=22), A051875 (n=23), A051876 (n=24), A255184 (n=25), A255185 (n=26), A255186 (n=27), A161935 (n=28), A255187 (n=29), A254474 (n=30).
Cf. A303301 (similar table but with generalized polygonal numbers).

Formula

T(n,k) = A139600(n-2,k) if n >= 2.
T(n,k) = A139601(n-3,k) if n >= 3.

A337763 Number of partitions of the n-th n-gonal number into distinct n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 4, 4, 2, 2, 4, 7, 8, 5, 6, 14, 6, 13, 23, 16, 19, 32, 34, 48, 56, 62, 73, 137, 126, 203, 257, 256, 409, 503, 612, 794, 1097, 1203, 1737, 2141, 2773, 3322, 4527, 5087, 7497, 8214, 11238, 12598
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2020

Keywords

Examples

			a(5) = 2 because 5th pentagonal number is 35 and we have [35] and [22, 12, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A337764 Number of compositions (ordered partitions) of the n-th n-gonal number into n-gonal numbers.

Original entry on oeis.org

1, 1, 2, 7, 124, 14371, 12842911, 103590035354, 8621925847489749, 8307493939404888703058, 102488432265617100812550713499, 17706351554929677399562928448484650120, 46435685450659378932235460132506329282776942795
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2020

Keywords

Examples

			a(3) = 7 because the third triangular number is 6 and we have [6], [3, 3], [3, 1, 1, 1], [1, 3, 1, 1], [1, 1, 3, 1], [1, 1, 1, 3] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] 1 / (1 - Sum_{k=1..n} x^p(n,k)), where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A360855 Array read by antidiagonals: T(m,n) is the number of triangles in the rook graph K_m X K_n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 4, 2, 2, 4, 10, 8, 6, 8, 10, 20, 20, 16, 16, 20, 20, 35, 40, 35, 32, 35, 40, 35, 56, 70, 66, 60, 60, 66, 70, 56, 84, 112, 112, 104, 100, 104, 112, 112, 84, 120, 168, 176, 168, 160, 160, 168, 176, 168, 120, 165, 240, 261, 256, 245, 240, 245, 256, 261, 240, 165
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

A triangle is a clique of size 3. Also, a 3-cycle.

Examples

			Array begins:
=======================================
m\n|  1   2   3   4   5   6   7   8 ...
---+-----------------------------------
1  |  0   0   1   4  10  20  35  56 ...
2  |  0   0   2   8  20  40  70 112 ...
3  |  1   2   6  16  35  66 112 176 ...
4  |  4   8  16  32  60 104 168 256 ...
5  | 10  20  35  60 100 160 245 360 ...
6  | 20  40  66 104 160 240 350 496 ...
7  | 35  70 112 168 245 350 490 672 ...
8  | 56 112 176 256 360 496 672 896 ...
  ...
		

Crossrefs

Main diagonal is A288961.
Rows n=1..3 are A000292(n-2), A007290, A060354.

Programs

  • PARI
    T(m, n) = m*binomial(n,3) + n*binomial(m,3)

Formula

T(m,n) = m*binomial(n,3) + n*binomial(m,3).
T(m,n) = T(n,m).

A383778 a(n) = n*(n^2 - 3*n + 10)*2^(n-4).

Original entry on oeis.org

0, 1, 4, 15, 56, 200, 672, 2128, 6400, 18432, 51200, 137984, 362496, 931840, 2351104, 5836800, 14286848, 34537472, 82575360, 195493888, 458752000, 1067974656, 2468347904, 5667553280, 12935233536, 29360128000, 66303557632, 149032009728, 333531054080, 743431995392
Offset: 0

Views

Author

Enrique Navarrete, May 09 2025

Keywords

Comments

a(n) is the number of strings of length n defined on {0,1,2,3} that contain exactly one 3, zero or two 2s and have no restriction on the number of 0s and 1s.

Examples

			a(3) = 15 since the strings are 322 (3 of this type), 300 (3 of this type), 311 (3 of this type), and 301 (6 of this type).
		

Crossrefs

Cf. A060354.

Programs

  • Mathematica
    a[n_] := n*(n^2-3*n+10)*2^(n-4); Array[a, 30, 0] (* Amiram Eldar, May 09 2025 *)

Formula

E.g.f.: x*(1 + x^2/2)*exp(2*x).
G.f.: x*(1 - 4*x + 7*x^2)/(1 - 2*x)^4. - Stefano Spezia, May 10 2025

A218152 a(n) = 1 + n + ((n-1)*n^2)/2.

Original entry on oeis.org

1, 2, 5, 13, 29, 56, 97, 155, 233, 334, 461, 617, 805, 1028, 1289, 1591, 1937, 2330, 2773, 3269, 3821, 4432, 5105, 5843, 6649, 7526, 8477, 9505, 10613, 11804, 13081, 14447, 15905, 17458, 19109, 20861, 22717, 24680, 26753, 28939, 31241, 33662, 36205, 38873
Offset: 0

Views

Author

Mokhtar Mohamed, Oct 24 2012

Keywords

Comments

a(n) = sum(i=0,1,2,...k) d(i)*C(n,i), d(0)=a(0), C(n,i)=0 for all i > n. I would introduce the arithmetic-arithmetic sequence which is defined as the sequence of finite differences, that is, with k consecutive rows of differences, whose first terms are d(1), d(2), d(3),..., d(k), the last row (k-th row) being of a constant difference. Here, it is submitted a special case of the above mentioned sequence with k=3, d(0)=d(1)=1, d(2)=2, d(3)=3.
This sequence is not in Comtet. - T. D. Noe, Nov 16 2012
a(n) appears to be the number of configurations of n equilateral triangles that are allowed to have common vertices, where A002061(n) gives the number of connected configurations and A060354(n) is the number of configurations consisting of several pieces. - Anton Zakharov, May 13 2018

Examples

			for n=5, a(5) = 1+5+(4*25)/2 = 1+5+100/2 = 1+5+50 = 56.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72.

Crossrefs

Programs

  • Mathematica
    Table[1+n+((n-1)n^2)/2,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,2,5,13},50] (* Harvey P. Dale, May 04 2023 *)
  • PARI
    Vec((1 - 2*x + 3*x^2 + x^3) / (1 - x)^4 + O(x^40)) \\ Colin Barker, May 13 2018

Formula

a(n) = a(n-1)+(4-5*n+3*n^2)/2 for n > 0 and a(0)=1.
a(n) = A006000(n-1)+1 for n > 0. - Antti Karttunen, Oct 24 2012
a(n) = A060354(n) + A002061(n). - Anton Zakharov, May 13 2018
G.f.: (x^3+3*x^2-2*x+1)/(x-1)^4. - Alois P. Heinz, May 13 2018
From Colin Barker, May 13 2018: (Start)
a(n) = (2 + 2*n - n^2 + n^3) / 2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)

Extensions

Corrected and edited by Mokhtar Mohamed, Nov 17 2012
Missing term 1937 inserted by Alois P. Heinz, Jun 11 2017

A294958 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*((k-2)^2+k)/2).

Original entry on oeis.org

1, 1, 3, 9, 28, 75, 198, 494, 1243, 3061, 7500, 18055, 43057, 101292, 236178, 545218, 1248480, 2835059, 6390360, 14298631, 31778782, 70168935, 153993321, 335977369, 728962258, 1573189113, 3377881482, 7217395643, 15348900996, 32494548816, 68494383520, 143773075158, 300568066729
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2017

Keywords

Comments

Euler transform of A060354.

Crossrefs

Programs

  • Maple
    N:=100:
    S:= series(mul(1/(1 - x^k)^(k*((k-2)^2+k)/2),k=1..N),x,N+1):
    seq(coeff(S,x,k),k=0..N); # Robert Israel, Nov 12 2017
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(k ((k - 2)^2 + k)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 ((d - 2)^2 + d)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A060354(k).
a(n) ~ exp(2*Zeta'(-1) + 3*Zeta(3) / (8*Pi^2) - Pi^16 / (1036800000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - 2*Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3)/2 + (-Pi^12 / (3600000 * 2^(2/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(2/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(4/5) * 3^(2/5) * Zeta(5)^(7/5)) + 2^(1/5) * Zeta(3) / (3*Zeta(5))^(2/5)) * n^(2/5) - (Pi^4 / (60 * 2^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5*(3*Zeta(5))^(1/5) / 2^(8/5)) * n^(4/5)) * (3*Zeta(5))^(53/400) / (2^(47/200) * sqrt(5*Pi) * n^(253/400)). - Vaclav Kotesovec, Nov 12 2017
Previous Showing 11-20 of 38 results. Next