cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A052871 Expansion of e.g.f. -LambertW(x/(-1+x)).

Original entry on oeis.org

0, 1, 4, 27, 268, 3585, 60846, 1255471, 30535912, 855688833, 27148954330, 962037575631, 37659124454700, 1613921425656865, 75156944627712598, 3778932799275876495, 204039148080188427856, 11774630933193827543553
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Sequence(Z,1 <= card),B=Set(S),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[-LambertW[x/(-1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
  • Maxima
    makelist(sum((n!/k!)*binomial(n-1, k-1)*k^(k-1), k, 1, n), n, 0, 17);  /* Bruno Berselli, May 25 2011 */
    
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(- lambertw(x/(-1+x))) )) \\ G. C. Greubel, Nov 08 2017

Formula

E.g.f.: -LambertW(x/(-1+x))
a(n) = Sum_{k=1..n} (n!/k!)*binomial(n-1, k-1)*k^(k-1). - Vladeta Jovovic, Sep 17 2003
a(n) ~ (1+exp(-1))^(n+1/2)*n^(n-1). - Vaclav Kotesovec, Sep 30 2013
From Seiichi Manyama, Sep 10 2024: (Start)
E.g.f. A(x) satisfies A(x) = x * (A(x) + exp(A(x))).
E.g.f.: Series_Reversion( x / (x + exp(x)) ). (End)

Extensions

New name using e.g.f., Vaclav Kotesovec, Sep 30 2013

A005512 Number of series-reduced labeled trees with n nodes.

Original entry on oeis.org

1, 1, 0, 4, 5, 96, 427, 6448, 56961, 892720, 11905091, 211153944, 3692964145, 75701219608, 1613086090995, 38084386700896, 949168254452993, 25524123909350112, 725717102391257347, 21955114496683796680
Offset: 1

Views

Author

Keywords

Examples

			a(6) = 96 because there are two unlabeled series-reduced trees on six vertices, the star and the tree with two vertices of degree three and four leaves; the first of these can be labeled in 6 ways and the second in 90, for a total of 96. - Isabel C. Lugo (izzycat(AT)gmail.com), Aug 19 2004
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 188 (3.1.94)
  • F. Harary and E. M. Palmer, Graphical Enumeration. New York: Academic Press, 1973. (gives g.f. for unlabeled series-reduced trees)
  • R. C. Read, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000014 (unlabeled analog), A060313.

Programs

  • Magma
    [1] cat [Factorial(n-2)*(&+[(-1)^k*Binomial(n,k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]
    
  • Maple
    A005512 := proc(n)
        if n = 1 then
            1;
        else
            add( (-1)^(n-r)*binomial(n,r)*r^(r-2)/(r-2)!,r=2..n) ;
            %*(n-2)! ;
        end if;
    end proc: # R. J. Mathar, Sep 09 2014
  • Mathematica
    a[1] = a[2] = 1; a[3] = 0; a[n_] := n!*(n-2)!*Sum[ (-1)^k*(n-k)^(n-k-3) / (k!*(n-k-2)!^2*(n-k-1)), {k, 0, n-2}]; Table[a[n], {n, 1, 20}](* Jean-François Alcover, Feb 16 2012, after given formula *)
    u[1, 1] = 1; u[2, 1] = 0; u[2, 2] = 1; u[3, k_] := 0;
    u[n_, k_] /; k <= 0 := 0;
    u[n_, k_] /; k >= 1 :=
    u[n, k] = (n (n - k) u[n - 1, k - 1] + n (n - 1) (n - 3) u[n - 2, k - 1])/k;
    Table[Sum[u[n, m], {m, 1, n}], {n, 50}] (* David Callan, Jun 25 2014, fast generation, after R. C. Read link *)
  • PARI
    a(n) = if(n<=1, n==1, sum(k=0, n-2, (-1)^k*(n-k)^(n-k-2)*binomial(n, k)*(n-2)!/(n-k-2)!)) \\ Andrew Howroyd, Dec 18 2017
    
  • Sage
    [1]+[factorial(n-2)*sum((-1)^k*binomial(n,k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020

Formula

a(n) = A060313(n)/n.
a(n) = Sum_{k=0..n-2} (-1)^k*(n-k)^(n-k-2)*binomial(n, k)*(n-2)!/(n-k-2)!, n>=2.
E.g.f.: (1+x)*B(x)*(1-B(x)/2), where B(x) is e.g.f. for A060356. - Vladeta Jovovic, Dec 17 2004
a(n) ~ (1-exp(-1))^(n+1/2)*n^(n-2). - Vaclav Kotesovec, Aug 07 2013

Extensions

Formula from Christian G. Bower, Jan 16 2004

A331488 Number of unlabeled lone-child-avoiding rooted trees with n vertices and more than two branches (of the root).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 6, 10, 20, 36, 70, 134, 263, 513, 1022, 2030, 4076, 8203, 16614, 33738, 68833, 140796, 288989, 594621, 1226781, 2536532, 5256303, 10913196, 22700682, 47299699, 98714362, 206323140, 431847121, 905074333, 1899247187, 3990145833, 8392281473
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

Also the number of lone-child-avoiding rooted trees with n vertices and more than two branches.

Examples

			The a(4) = 1 through a(9) = 10 trees:
  (ooo)  (oooo)  (ooooo)   (oooooo)   (ooooooo)    (oooooooo)
                 (oo(oo))  (oo(ooo))  (oo(oooo))   (oo(ooooo))
                           (ooo(oo))  (ooo(ooo))   (ooo(oooo))
                                      (oooo(oo))   (oooo(ooo))
                                      (o(oo)(oo))  (ooooo(oo))
                                      (oo(o(oo)))  (o(oo)(ooo))
                                                   (oo(o(ooo)))
                                                   (oo(oo)(oo))
                                                   (oo(oo(oo)))
                                                   (ooo(o(oo)))
		

Crossrefs

The not necessarily lone-child-avoiding version is A331233.
The Matula-Goebel numbers of these trees are listed by A331490.
A000081 counts unlabeled rooted trees.
A001678 counts lone-child-avoiding rooted trees.
A001679 counts topologically series-reduced rooted trees.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A331489 lists Matula-Goebel numbers of series-reduced rooted trees.

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],Length[#]>2&&FreeQ[#,{_}]&]],{n,10}]

Formula

For n > 1, a(n) = A001679(n) - A001678(n).

Extensions

a(37)-a(38) from Jinyuan Wang, Jun 26 2020
Terminology corrected (lone-child-avoiding, not series-reduced) by Gus Wiseman, May 10 2021

A331678 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings. Locally disjoint means no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex.

Examples

			The a(1) = 1 through a(4) = 18 trees:
  (1)  (2)       (3)            (4)
       (11)      (12)           (13)
       ((1)(1))  (111)          (22)
                 ((1)(2))       (112)
                 ((1)(1)(1))    (1111)
                 ((1)((1)(1)))  ((1)(3))
                                ((2)(2))
                                ((2)(11))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

The case where all leaves are singletons is A316696.
The case where all leaves are (1) is A316697.
The non-locally disjoint version is A319312.
The case with all atoms equal to 1 is A331679.
The identity tree case is A331686.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],disjointQ],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]

A319376 Triangle read by rows: T(n,k) is the number of lone-child-avoiding rooted trees with n leaves of exactly k colors.

Original entry on oeis.org

1, 1, 1, 2, 6, 4, 5, 30, 51, 26, 12, 146, 474, 576, 236, 33, 719, 3950, 8572, 8060, 2752, 90, 3590, 31464, 108416, 175380, 134136, 39208, 261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032, 766, 94648, 1908858, 14047288, 49885320, 95715728, 101799712, 56555904, 12818912
Offset: 1

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Comments

Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,      4;
    5,    30,     51,      26;
   12,   146,    474,     576,     236;
   33,   719,   3950,    8572,    8060,   2752;
   90,  3590,  31464,  108416,  175380,  134136,   39208;
  261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032;
  ...
From _Gus Wiseman_, Dec 31 2020: (Start)
The 12 trees counted by row n = 3:
  (111)    (112)    (123)
  (1(11))  (122)    (1(23))
           (1(12))  (2(13))
           (1(22))  (3(12))
           (2(11))
           (2(12))
(End)
		

Crossrefs

Columns k=1..2 are A000669, A319377.
Main diagonal is A000311.
Row sums are A316651.
The unlabeled version, counting inequivalent leaf-colorings of lone-child-avoiding rooted trees, is A330465.
Lone-child-avoiding rooted trees are counted by A001678 (shifted left once).
Labeled lone-child-avoiding rooted trees are counted by A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    T:= (n, k)-> add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*A[n, i], {i, 1, k}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],1Gus Wiseman, Dec 31 2020 *)
  • PARI
    \\ here R(n,k) is k-th column of A319254.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319254(n,i).
Sum_{k=1..n} k * T(n,k) = A326396(n). - Alois P. Heinz, Sep 11 2019

A331490 Matula-Goebel numbers of series-reduced rooted trees with more than two branches (of the root).

Original entry on oeis.org

8, 16, 28, 32, 56, 64, 76, 98, 112, 128, 152, 172, 196, 212, 224, 256, 266, 304, 343, 344, 392, 424, 428, 448, 512, 524, 532, 602, 608, 652, 686, 688, 722, 742, 784, 848, 856, 896, 908, 931, 1024, 1048, 1052, 1064, 1204, 1216, 1244, 1304, 1372, 1376, 1444
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

We say that a rooted tree is (topologically) series-reduced if no vertex has degree 2.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.
Also Matula-Goebel numbers of lone-child-avoiding rooted trees with more than two branches.

Examples

			The sequence of all series-reduced rooted trees with more than two branches together with their Matula-Goebel numbers begins:
    8: (ooo)
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   98: (o(oo)(oo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
  212: (oo(oooo))
  224: (ooooo(oo))
  256: (oooooooo)
  266: (o(oo)(ooo))
  304: (oooo(ooo))
  343: ((oo)(oo)(oo))
  344: (ooo(o(oo)))
		

Crossrefs

These trees are counted by A331488.
Unlabeled rooted trees are counted by A000081.
Lone-child-avoiding rooted trees are counted by A001678.
Topologically series-reduced rooted trees are counted by A001679.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Matula-Goebel numbers of series-reduced rooted trees are A331489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
    Select[Range[1000],PrimeOmega[#]>2&&srQ[#]&]

A254382 Number of rooted labeled trees on n nodes such that every nonroot node is the child of a branching node or of the root.

Original entry on oeis.org

0, 1, 2, 3, 16, 85, 696, 6349, 72080, 918873, 13484080, 219335281, 3962458248, 78203547877, 1680235050872, 38958029188485, 970681471597216, 25847378934429361, 732794687650764000, 22032916968153975769, 700360446794528578520
Offset: 0

Views

Author

Geoffrey Critzer, Jan 29 2015

Keywords

Comments

Here, a branching node is a node with at least two children.
In other words, a(n) is the number of labeled rooted trees on n nodes such that the path from every node towards the root reaches a branching node (or the root) in one step.
Also labeled rooted trees that are lone-child-avoiding except possibly for the root. The unlabeled version is A198518. - Gus Wiseman, Jan 22 2020

Examples

			a(5) = 85:
...0................0...............0-o...
...|.............../ \............ /|\....
...o..............o   o...........o o o...
../|\............/ \   ...................
.o o o..........o   o   ..................
These trees have 20 + 60 + 5 = 85 labelings.
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches]) are:
  1  1[2]  1[2,3]  1[2,3,4]
     2[1]  2[1,3]  1[2[3,4]]
           3[1,2]  1[3[2,4]]
                   1[4[2,3]]
                   2[1,3,4]
                   2[1[3,4]]
                   2[3[1,4]]
                   2[4[1,3]]
                   3[1,2,4]
                   3[1[2,4]]
                   3[2[1,4]]
                   3[4[1,2]]
                   4[1,2,3]
                   4[1[2,3]]
                   4[2[1,3]]
                   4[3[1,2]]
(End)
		

Crossrefs

Cf. A231797, A052318 (condition is applied only to leaf nodes).
The unlabeled version is A198518
The non-planted case is A060356.
Labeled rooted trees are A000169.
Lone-child-avoiding rooted trees are A001678(n + 1).
Labeled topologically series-reduced rooted trees are A060313.
Labeled lone-child-avoiding unrooted trees are A108919.

Programs

  • Mathematica
    nn = 20; b = 1 + Sum[nn = n; n! Coefficient[Series[(Exp[x] - x)^n, {x, 0, nn}], x^n]*x^n/n!, {n,1, nn}]; c = Sum[a[n] x^n/n!, {n, 0, nn}]; sol = SolveAlways[b == Series[1/(1 - (c - x)), {x, 0, nn}], x]; Flatten[Table[a[n], {n, 0, nn}] /. sol]
    nn = 30; CoefficientList[Series[1+x-1/Sum[SeriesCoefficient[(E^x-x)^n,{x,0,n}]*x^n,{n,0,nn}],{x,0,nn}],x] * Range[0,nn]! (* Vaclav Kotesovec, Jan 30 2015 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
    Table[Length[Select[lrt[Range[n]],FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)

Formula

E.g.f.: A(x) satisfies 1/(1 - (A(x) - x)) = B(x) where B(x) is the e.g.f. for A231797.
a(n) ~ (1-exp(-1))^(n-1/2) * n^(n-1). - Vaclav Kotesovec, Jan 30 2015

A331489 Matula-Goebel numbers of topologically series-reduced rooted trees.

Original entry on oeis.org

1, 2, 7, 8, 16, 19, 28, 32, 43, 53, 56, 64, 76, 98, 107, 112, 128, 131, 152, 163, 172, 196, 212, 224, 227, 256, 263, 266, 304, 311, 343, 344, 383, 392, 424, 428, 443, 448, 512, 521, 524, 532, 577, 602, 608, 613, 652, 686, 688, 719, 722, 742, 751, 784, 848, 856
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

We say that a rooted tree is topologically series-reduced if no vertex (including the root) has degree 2.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of all topologically series-reduced rooted trees together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    7: ((oo))
    8: (ooo)
   16: (oooo)
   19: ((ooo))
   28: (oo(oo))
   32: (ooooo)
   43: ((o(oo)))
   53: ((oooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   98: (o(oo)(oo))
  107: ((oo(oo)))
  112: (oooo(oo))
  128: (ooooooo)
  131: ((ooooo))
  152: (ooo(ooo))
  163: ((o(ooo)))
		

Crossrefs

Unlabeled rooted trees are counted by A000081.
Topologically series-reduced trees are counted by A000014.
Topologically series-reduced rooted trees are counted by A001679.
Labeled topologically series-reduced trees are counted by A005512.
Labeled topologically series-reduced rooted trees are counted by A060313.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
    Select[Range[nn],PrimeOmega[#]!=2&&And@@srQ/@primeMS[#]&]

A331578 Number of labeled series-reduced rooted trees with n vertices and more than two branches of the root.

Original entry on oeis.org

0, 0, 0, 4, 5, 186, 847, 17928, 166833, 3196630, 45667391, 925287276, 17407857337, 393376875906, 8989368580935, 229332484742416, 6094576250570849, 174924522900914094, 5271210321949744111, 168792243040279327860, 5674164658298121248361, 200870558472768096534490
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2020

Keywords

Comments

A rooted tree is series-reduced if no vertex (including the root) has degree 2.
Also labeled lone-child-avoiding rooted trees with n vertices and more than two branches, where a rooted tree is lone-child-avoiding if no vertex has exactly one child.

Examples

			Non-isomorphic representatives of the a(7) = 847 trees (in the format root[branches]) are:
  1[2,3,4[5,6,7]]
  1[2,3,4,5[6,7]]
  1[2,3,4,5,6,7]
		

Crossrefs

The non-series-reduced version is A331577.
The unlabeled version is A331488.
Lone-child-avoiding rooted trees are counted by A001678.
Topologically series-reduced rooted trees are counted by A001679.
Labeled topologically series-reduced rooted trees are counted by A060313.
Labeled lone-child-avoiding rooted trees are counted by A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Matula-Goebel numbers of series-reduced rooted trees are A331489.

Programs

  • Mathematica
    lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
    Table[Length[Select[lrt[Range[n]],Length[#]>2&&FreeQ[#,[]]&]],{n,6}]
  • PARI
    a(n) = {if(n<=1, 0, sum(k=1, n, (-1)^(n-k)*k^(k-2)*n*(n-2)!*binomial(n-1,k-1)*(2*k*n - n - k^2)/k!))} \\ Andrew Howroyd, Dec 09 2020
    
  • PARI
    seq(n)={my(w=lambertw(-x/(1+x) + O(x*x^n))); Vec(serlaplace(-x - w - (x/2)*w^2), -n)} \\ Andrew Howroyd, Dec 09 2020

Formula

From Andrew Howroyd, Dec 09 2020: (Start)
a(n) = A060313(n) - n*A060356(n-1) for n > 1.
a(n) = Sum_{k=1..n} (-1)^(n-k)*k^(k-2)*n*(n-2)!*binomial(n-1,k-1)*(2*k*n - n - k^2)/k! for n > 1.
E.g.f.: -x - LambertW(-x/(1+x)) - (x/2)*LambertW(-x/(1+x))^2.
(End)

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 09 2020

A058863 Number of connected labeled chordal graphs on n nodes with no induced path P_4; also the number of labeled trees with each vertex replaced by a clique.

Original entry on oeis.org

1, 1, 4, 23, 181, 1812, 22037, 315569, 5201602, 97009833, 2019669961, 46432870222, 1168383075471, 31939474693297, 942565598033196, 29866348653695203, 1011335905644178273, 36446897413531401020, 1392821757824071815641, 56259101478392975833333
Offset: 1

Views

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

Crossrefs

Programs

  • Maple
    S:= series(-LambertW(exp(-x)-1), x, 101):
    seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 30 2015
  • Mathematica
    a[n_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k^(k-1), {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Dec 17 2017, after Vladeta Jovovic *)
  • PARI
    geta(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(1)); return(1 + sum(k=1, n-2, binomial(n,k)*(vA[n-k] - va[n-k])));}
    getA(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(2)); return ((va[n] + sum(k=1, n-1, k*va[k]*binomial(n,k)*vA[n-k])/n));}
    both(n) = {va = vector(n); vA = vector(n); for (i=1, n, va[i] = geta(i, va, vA); vA[i] = getA(i, va, vA);); print("va_A058863=", va); print("vA_A058864=", vA);}
    \\ Michel Marcus, Apr 03 2013

Formula

A058863 and A058864 satisfy:
1) c(n) = 1 + Sum_{k=1..n-2} binomial(n, k)*(t(n-k) - c(n-k))
2) t(n) = c(n) + Sum_{k=1..n-1} k*c(k)*binomial(n, k)*t(n-k)/n
where c(n) (A058863) is the number of connected graphs of this type and t(n) (A058864) is the total number of such graphs.
a(n) is asymptotic to sqrt(r*(e-1))/n*(n/(e*r))^n where r = 1 - log(e-1).
E.g.f.: -LambertW(exp(-x)-1). - Vladeta Jovovic, Nov 22 2002
a(n) = Sum_{k=0..n} Stirling2(n, k)*A060356(k). Also a(n) = Sum_{k=1..n} (-1)^(n-k)*Stirling2(n, k)*k^(k-1). - Vladeta Jovovic, Sep 17 2003

Extensions

Formulae edited and completed by Michel Marcus, Apr 07 2013
Previous Showing 11-20 of 32 results. Next