cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A060681 Largest difference between consecutive divisors of n (ordered by size).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 6, 4, 6, 5, 10, 6, 12, 7, 10, 8, 16, 9, 18, 10, 14, 11, 22, 12, 20, 13, 18, 14, 28, 15, 30, 16, 22, 17, 28, 18, 36, 19, 26, 20, 40, 21, 42, 22, 30, 23, 46, 24, 42, 25, 34, 26, 52, 27, 44, 28, 38, 29, 58, 30, 60, 31, 42, 32, 52, 33, 66, 34, 46, 35, 70, 36, 72, 37
Offset: 1

Views

Author

Labos Elemer, Apr 19 2001

Keywords

Comments

Is a(n) the least m > 0 such that n - m divides n! + m? - Clark Kimberling, Jul 28 2012
Is a(n) the least m > 0 such that L(n-m) divides L(n+m), where L = A000032 (Lucas numbers)? - Clark Kimberling, Jul 30 2012
Records give A006093. - Omar E. Pol, Oct 26 2013
Divide n by its smallest prime factor p, then multiply with (p-1), with a(1) = 0 by convention. Compare also to A366387. - Antti Karttunen, Oct 23 2023
a(n) is also the smallest LCM of positive integers x and y where x + y = n. - Felix Huber, Aug 28 2024

Examples

			For n = 35, divisors are {1, 5, 7, 35}; differences are {4, 2, 28}; a(35) = largest difference = 28 = 35 - 35/5.
		

Crossrefs

Cf. A013661, A020639, A060680, A060682, A060683, A060685, A064097 (number of iterations needed to reach 1).
Cf. also A171462, A366387.

Programs

  • Haskell
    a060681 n = div n p * (p - 1) where p = a020639 n
    -- Reinhard Zumkeller, Apr 06 2015
    
  • Maple
    read("transforms") :
    A060681 := proc(n)
        if n = 1 then
            0 ;
        else
            sort(convert(numtheory[divisors](n),list)) ;
            DIFF(%) ;
            max(op(%)) ;
        end if;
    end proc:
    seq(A060681(n),n=1..60) ; # R. J. Mathar, May 23 2018
    # second Maple program:
    A060681:=n->if(n=1,0,min(map(x->ilcm(x,n-x),[$1..1/2*n]))); seq(A060681(n),n=1..74); # Felix Huber, Aug 28 2024
  • Mathematica
    a[n_ ] := n - n/FactorInteger[n][[1, 1]]
    Array[Max[Differences[Divisors[#]]] &, 80, 2] (* Harvey P. Dale, Oct 26 2013 *)
  • PARI
    diff(v)=vector(#v-1,i,v[i+1]-v[i])
    a(n)=vecmax(diff(divisors(n))) \\ Charles R Greathouse IV, Sep 02 2015
    
  • PARI
    a(n) = if (n==1, 0, n - n/factor(n)[1,1]); \\ Michel Marcus, Oct 24 2015
    
  • PARI
    first(n) = n = max(n, 1); my(res = vector(n)); res[1] = 0; forprime(p = 2, n, for(i = 1, n \ p, if(res[p * i] == 0, res[p * i] = i*(p-1)))); res \\ David A. Corneth, Jan 08 2019
    
  • Python
    from sympy import primefactors
    def A060681(n): return n-n//min(primefactors(n),default=1) # Chai Wah Wu, Jun 21 2023

Formula

a(n) = n - n/A020639(n).
a(n) = n - A032742(n). - Omar E. Pol, Aug 31 2011
a(2n) = n, a(3*(2n+1)) = 2*(2n+1) = 4n + 2. - Antti Karttunen, Oct 23 2023
Sum_{k=1..n} a(k) ~ (1/2 - c) * n^2, where c is defined in the corresponding formula in A032742. - Amiram Eldar, Dec 21 2024

Extensions

Edited by Dean Hickerson, Jan 22 2002
a(1)=0 added by N. J. A. Sloane, Oct 01 2015 at the suggestion of Antti Karttunen

A137921 Number of divisors d of n such that d+1 is not a divisor of n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 4, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 3, 4, 5, 2, 5, 2, 5, 4, 3, 4, 6, 2, 3, 4, 6, 2, 5, 2, 5, 6, 3, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 3, 2, 7, 2, 3, 6, 6, 4, 6, 2, 5, 4, 7, 2, 8, 2, 3, 6, 5, 4, 6, 2, 8, 5, 3, 2, 8, 4, 3, 4, 7, 2, 8, 4, 5, 4, 3, 4, 9, 2, 5, 6, 7, 2, 6, 2, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2008

Keywords

Comments

a(n) = number of "divisor islands" of n. A divisor island is any set of consecutive divisors of a number where no pairs of consecutive divisors in the set are separated by 2 or more. - Leroy Quet, Feb 07 2010

Examples

			The divisors of 30 are 1,2,3,5,6,10,15,30. The divisor islands are (1,2,3), (5,6), (10), (15), (30). (Note that the differences between consecutive divisors 5-3, 10-6, 15-10 and 30-15 are all > 1.) There are 5 such islands, so a(30)=5.
		

Crossrefs

Bisections: A099774, A174199.
First appearance of n is at position A173569(n).
Numbers whose divisors have no non-singleton runs are A005408.
The longest run of divisors of n has length A055874(n).
The number of successive pairs of divisors of n is A129308(n).

Programs

  • Haskell
    a137921 n = length $ filter (> 0) $
       map ((mod n) . (+ 1)) [d | d <- [1..n], mod n d == 0]
    -- Reinhard Zumkeller, Nov 23 2011
    
  • Maple
    with(numtheory): disl := proc (b) local ct, j: ct := 1: for j to nops(b)-1 do if 2 <= b[j+1]-b[j] then ct := ct+1 else end if end do: ct end proc: seq(disl(divisors(n)), n = 1 .. 120); # Emeric Deutsch, Feb 12 2010
  • Mathematica
    f[n_] := Length@ Split[ Divisors@n, #2 - #1 == 1 &]; Array[f, 105] (* f(n) from Bobby R. Treat *) (* Robert G. Wilson v, Feb 22 2010 *)
    Table[Count[Differences[Divisors[n]],?(#>1&)]+1,{n,110}] (* _Harvey P. Dale, Jun 05 2012 *)
    a[n_] := DivisorSum[n, Boole[!Divisible[n, #+1]]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=my(d,s=0);if(n%2,numdiv(n),d=divisors(n);for(i=1,#d,if(n%(d[i]+1),s++));s)
    
  • PARI
    a(n)=sumdiv(n,d,(n%(d+1)!=0)); \\ Joerg Arndt, Jan 06 2015
    
  • Python
    from sympy import divisors
    def A137921(n):
        return len([d for d in divisors(n,generator=True) if n % (d+1)])
    # Chai Wah Wu, Jan 05 2015

Formula

a(n) <= A000005(n), with equality iff n is odd; a(A137922(n)) = 2.
a(n) = A000005(n) - A129308(n). - Michel Marcus, Jan 06 2015
a(n) = A001222(A328166(n)). - Gus Wiseman, Oct 16 2019
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 18 2024

Extensions

Corrected and edited by Charles R Greathouse IV, Apr 19 2010
Edited by N. J. A. Sloane, Aug 10 2010

A129308 a(n) is the number of positive integers k such that k*(k+1) divides n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 5, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Leroy Quet, May 26 2007

Keywords

Comments

The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception.
In other words, a(n) is the number of oblong numbers (A002378) dividing n. - Bernard Schott, Jul 29 2022

Examples

			The divisors of 20 are 1,2,4,5,10,20. Of these there are two that are of the form k(k+1): 2 = 1*2 and 20 = 4*5. So a(2) = 2.
		

Crossrefs

Positions of 0's and 1's are A088725, whose characteristic function is A360128.
First appearance of n is A287142(n), with sorted version A328450.
The longest run of divisors of n has length A055874(n).
One less than A195155.

Programs

  • Mathematica
    a = {}; For[n = 1, n < 90, n++, k = 1; co = 0; While[k < Sqrt[n], If[IntegerQ[ n/(k*(k + 1))], co++ ]; k++ ]; AppendTo[a, co]]; a (* Stefan Steinerberger, May 27 2007 *)
    Table[Count[Differences[Divisors[n]],1],{n,30}] (* Gus Wiseman, Oct 15 2019 *)
  • PARI
    a(n)=sumdiv(n, d, n%(d+1)==0); \\ Michel Marcus, Jan 06 2015
    
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A129308(n): return 0 if n&1 else sum(1 for a, b in pairwise(divisors(n)) if a+1==b) # Chai Wah Wu, Jun 09 2025

Formula

a(2n-1) = 0; a(2n) = A007862(n). - Ray Chandler, Jun 24 2008
G.f.: Sum_{n>=1} x^(n*(n+1))/(1-x^(n*(n+1))). - Joerg Arndt, Jan 30 2011 [modified by Ilya Gutkovskiy, Apr 14 2021]
a(n) = A000005(n) - A137921(n), where A137921(n) is the number of maximal runs of successive divisors of n. - Gus Wiseman, Oct 15 2019
a(n) = Sum_{d|n} A005369(d). - Ridouane Oudra, Jan 22 2021
a(n) = A195155(n)-1. - Antti Karttunen, Feb 21 2023
From Amiram Eldar, Dec 31 2023: (Start)
a(n) = A088722(n) + A059841(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. (End)

Extensions

More terms from Stefan Steinerberger, May 27 2007
Extended by Ray Chandler, Jun 24 2008

A193829 Irregular triangle read by rows in which row n lists the differences between consecutive divisors of n.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 1, 3, 6, 1, 2, 4, 2, 6, 1, 3, 5, 10, 1, 1, 1, 2, 6, 12, 1, 5, 7, 2, 2, 10, 1, 2, 4, 8, 16, 1, 1, 3, 3, 9, 18, 1, 2, 1, 5, 10, 2, 4, 14, 1, 9, 11, 22, 1, 1, 1, 2, 2, 4, 12, 4, 20, 1, 11, 13, 2, 6, 18, 1, 2, 3, 7, 14, 28, 1, 1, 2, 1, 4, 5, 15, 30
Offset: 2

Views

Author

Omar E. Pol, Aug 31 2011

Keywords

Comments

The sum of row n gives A000027(n-1). The product of row n gives A057449(n). Row n has length A032741(n). The final term of row n is A060681(n). It appears that the first term of row n is A057237(n).

Examples

			Written as a triangle:
1,
2,
1, 2,
4,
1, 1, 3,
6,
1, 2, 4,
2, 6,
1, 3, 5,
10,
1, 1, 1, 2, 6
		

Crossrefs

Cf. A060682 (distinct terms per row), A060680 (row minima), A060681 (row maxima).

Programs

  • Haskell
    import Data.List (genericIndex)
    a193829 n k = genericIndex a193829_tabf (n - 1) !! (k - 1)
    a193829_row n = genericIndex a193829_tabf (n - 1)
    a193829_tabf = zipWith (zipWith (-))
                           (map tail a027750_tabf') a027750_tabf'
    -- Reinhard Zumkeller, Jun 25 2015, Jun 23 2013
  • Mathematica
    Flatten[Table[Differences[Divisors[n]], {n, 2, 30}]] (* T. D. Noe, Aug 31 2011 *)

Formula

T(n,k) = A027750(n,k+1)-A027750(n,k). - R. J. Mathar, Sep 01 2011

A356233 Number of integer factorizations of n into gapless numbers (A066311).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 2, 5, 1, 4, 1, 2, 1, 1, 1, 7, 2, 1, 3, 2, 1, 4, 1, 7, 1, 1, 2, 9, 1, 1, 1, 3, 1, 2, 1, 2, 4, 1, 1, 12, 2, 2, 1, 2, 1, 7, 1, 3, 1, 1, 1, 8, 1, 1, 2, 11, 1, 2, 1, 2, 1, 2, 1, 16, 1, 1, 4, 2, 2, 2, 1, 5, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define a number to be gapless (listed by A066311) iff its prime indices cover an interval of positive integers.

Examples

			The counted factorizations of n = 2, 4, 8, 12, 24, 36, 48:
  (2)  (4)    (8)      (12)     (24)       (36)       (48)
       (2*2)  (2*4)    (2*6)    (3*8)      (4*9)      (6*8)
              (2*2*2)  (3*4)    (4*6)      (6*6)      (2*24)
                       (2*2*3)  (2*12)     (2*18)     (3*16)
                                (2*2*6)    (3*12)     (4*12)
                                (2*3*4)    (2*2*9)    (2*3*8)
                                (2*2*2*3)  (2*3*6)    (2*4*6)
                                           (3*3*4)    (3*4*4)
                                           (2*2*3*3)  (2*2*12)
                                                      (2*2*2*6)
                                                      (2*2*3*4)
                                                      (2*2*2*2*3)
		

Crossrefs

The shortest of these factorizations is listed at A356234, length A287170.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A003963 multiplies together the prime indices.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A356226 lists the lengths of maximal gapless submultisets of prime indices:
- length: A287170
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sqq[n_]:=Max@@Differences[primeMS[n]]<=1;
    Table[Length[Select[facs[n],And@@sqq/@#&]],{n,100}]

A356226 Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 3, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 5, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle  begins: {}, {1}, {1}, {2}, {1}, {2}, {1}, {3}, {2}, {1,1}, {1}, {3}, {1}, {1,1}, {2}, {4}, {1}, {3}, {1}, {2,1}, ... For example, the prime indices of 20 are {1,1,3}, which separates into maximal gapless submultisets {{1,1},{3}}, so row 20 is (2,1).
The prime indices of 18564 are {1,1,2,4,6,7}, which separates into {1,1,2}, {4}, {6,7}, so row 18564 is (3,1,2). This corresponds to the factorization 18564 = 12 * 7 * 221.
		

Crossrefs

Row sums are A001222.
Singleton row positions are A073491, complement A073492.
Length-2,3,4 row positions are A073493-A073495.
Row lengths are A287170, firsts A066205.
Row minima are A356227.
Row maxima are A356228.
Bisected run-lengths are A356229.
Standard composition numbers of rows are A356230.
Heinz numbers of rows are A356231.
Positions of first appearances are A356232.
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]

A088725 Numbers having no divisors d>1 such that also d+1 is a divisor.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

Complement of A088723.
Union of A132895 and A005408, the odd numbers. - Ray Chandler, May 29 2008
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 9, 79, 778, 7782, 77813, 778055, 7780548, 77805234, 778052138, 7780519314, ... . Apparently, the asymptotic density of this sequence exists and equals 0.77805... . - Amiram Eldar, Jun 14 2022

Examples

			From _Gus Wiseman_, Oct 16 2019: (Start)
The sequence of terms together with their divisors > 1 begins:
   1: {}
   2: {2}
   3: {3}
   4: {2,4}
   5: {5}
   7: {7}
   8: {2,4,8}
   9: {3,9}
  10: {2,5,10}
  11: {11}
  13: {13}
  14: {2,7,14}
  15: {3,5,15}
  16: {2,4,8,16}
  17: {17}
  19: {19}
  21: {3,7,21}
  22: {2,11,22}
  23: {23}
  25: {5,25}
(End)
		

Crossrefs

Positions of 0's and 1's in A129308.
Positions of 0's and 1's in A328457 (also).
Numbers whose divisors (including 1) have no non-singleton runs are A005408.
The number of runs of divisors of n is A137921(n).
The longest run of divisors of n has length A055874(n).

Programs

  • Mathematica
    Select[Range[100],FreeQ[Differences[Rest[Divisors[#]]],1]&] (* Harvey P. Dale, Sep 16 2017 *)
  • PARI
    isok(n) = {my(d=setminus(divisors(n), [1])); #setintersect(d, apply(x->x+1, d)) == 0;} \\ Michel Marcus, Oct 28 2019

Formula

A088722(a(n)) = 0.

Extensions

Extended by Ray Chandler, May 29 2008

A328166 Heinz number of the run-lengths of the divisors of n.

Original entry on oeis.org

2, 3, 4, 6, 4, 10, 4, 12, 8, 12, 4, 28, 4, 12, 16, 24, 4, 40, 4, 36, 16, 12, 4, 112, 8, 12, 16, 48, 4, 120, 4, 48, 16, 12, 16, 224, 4, 12, 16, 144, 4, 120, 4, 48, 64, 12, 4, 448, 8, 48, 16, 48, 4, 160, 16, 144, 16, 12, 4, 832, 4, 12, 64, 96, 16, 160, 4, 48, 16
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2019

Keywords

Comments

The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k).

Examples

			Splitting the divisors of 30 into runs gives {{1, 2, 3}, {5, 6}, {10}, {15}, {30}}, and the Heinz number of {1, 1, 1, 2, 3} is 120, so a(30) = 120.
More examples from _Antti Karttunen_, Dec 09 2021: (Start)
Splitting the divisors of 1 into runs gives {1}, and the Heinz number of that is 2.
Splitting the divisors of 2 into runs gives {1, 2}, and the Heinz number of that is 3. [one run of length 2, therefore a(2) = prime(2)^1].
Splitting the divisors of 3 into runs gives {1} and {3}, and the Heinz number of that is 4. [two runs of length 1, therefore a(3) = prime(1)^2].
Splitting the divisors of 4 into runs gives {1, 2} and {4}, and the Heinz number of that is 6. [one run of length 1, and other run of length 2, therefore a(4) = prime(1)*prime(2)].
Splitting the divisors of 5 into runs gives {1} and {5}, and the Heinz number of that is 4. [two runs of length 1, therefore a(5) = prime(1)^2].
(End)
		

Crossrefs

The longest run of divisors of n has length A055874(n).
Numbers whose divisors > 1 have no non-singleton runs are A088725.
The number of successive pairs of divisors of n is A129308(n).
The Heinz number of the set of divisors of n is A275700(n).
Numbers whose divisors do not have weakly decreasing run-lengths are A328165.

Programs

  • Mathematica
    Table[Times@@Prime/@Length/@Split[Divisors[n],#2==#1+1&],{n,30}]
  • PARI
    A328166(n) = { my(rl=0,pd=0,v=vector(numdiv(n)),m=1); fordiv(n, d, if(d>(1+pd), v[rl]++; rl=0); pd=d; rl++); v[rl]++; for(i=1,#v, m *= prime(i)^v[i]); (m); }; \\ Antti Karttunen, Dec 09 2021

Formula

A001222(a(n)) = A137921(n).
A056239(a(n)) = A000005(n).

A060683 Numbers for which the differences between consecutive divisors (ordered by size) are distinct.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Labos Elemer, Apr 19 2001

Keywords

Comments

A060682(a(n)) = A000005(a(n)) - 1, n > 1. - Reinhard Zumkeller, Jun 25 2015

Examples

			For n=6, divisors={1,2,3,6}; differences={1,1,3}, which are not distinct, so 6 is not in the sequence.
		

Crossrefs

Cf. A060682, A259366 (complement).

Programs

  • Haskell
    a060683 n = a060683_list !! (n-1)
    a060683_list = 1 : filter (\x -> a060682 x == a000005' x - 1) [2..]
    -- Reinhard Zumkeller, Jun 25 2015
    
  • Mathematica
    test[n_ ] := Length[dd=Drop[d=Divisors[n], 1]-Drop[d, -1]]==Length[Union[dd]]; Select[Range[1, 100], test]
  • PARI
    isok(k) = my(d=divisors(k)); #Set(vector(#d-1, k, d[k+1]-d[k])) == #d-1; \\ Michel Marcus, Nov 11 2023

Extensions

Edited by Dean Hickerson, Jan 22 2002

A356230 The a(n)-th composition in standard order is the sequence of lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 8, 1, 4, 1, 5, 3, 3, 1, 8, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 2, 8, 1, 3, 3, 9, 1, 5, 1, 5, 4, 3, 1, 16, 2, 6, 3, 5, 1, 8, 3, 9, 3, 3, 1, 8, 1, 3, 5, 32, 3, 5, 1, 5, 3, 6, 1, 16, 1, 3, 4, 5, 2, 5, 1, 17, 8, 3, 1, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A multiset is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}. These have lengths (3,1,2), which is the 38th composition in standard order, so a(18564) = 38.
		

Crossrefs

Numbers grouped by number of gaps in prime indices are A073491-A073495.
These are the standard composition numbers of rows of A356226.
Using Heinz numbers instead of standard compositions gives A356231.
Positions of first appearances are A356603, sorted A356232.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A066099 lists compositions in standard order.
A132747 counts non-isolated divisors, complement A132881.
A333627 represents the run-lengths of standard compositions.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

A000120(a(n)) = A287170(n).
A333766(a(n)) = A356228(n).
A333768(a(n)) = A356227(n).
Showing 1-10 of 37 results. Next