cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A102050 a(n) = 1 if 10^(2^n)+1 is prime, otherwise smallest prime factor of 10^(2^n)+1.

Original entry on oeis.org

1, 1, 73, 17, 353, 19841, 1265011073, 257, 10753, 1514497, 1856104284667693057, 106907803649, 458924033, 3635898263938497962802538435084289
Offset: 0

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004

Keywords

Comments

The smallest known prime factors of 10^(2^15)+1 to 10^(2^18)+1 are 65537, 8257537, 175636481, 639631361. - Jeppe Stig Nielsen, Nov 04 2010
Above values for a(15)-a(18) are confirmed. a(19) = 70254593, a(20) = 167772161. - Chai Wah Wu, Oct 16 2019
a(14) <= 1702047085242613845984907230501142529. - Max Alekseyev, Feb 26 2023

Examples

			10^(2^4)+1 = 10000000000000001 = 353*449*641*1409*69857, hence a(4) = 353.
		

Crossrefs

Programs

  • Mathematica
    spf[n_]:=Module[{c=10^2^n+1},If[PrimeQ[c],1,FactorInteger[c][[1,1]]]]; Array[spf,15,0] (* Harvey P. Dale, Apr 09 2019 *)
  • PARI
    for(k=0,8,fac=factor(10^(2^k)+1);print1(if(matsize(fac)[1]==1,1,fac[1,1]),","))

Formula

If 10^(2^n)+1 is composite, a(n) = A185121(n).

Extensions

a(13) from the Keller link, added by Jeppe Stig Nielsen, Nov 04 2010

A110369 (Digit 1 repeated n times) + n.

Original entry on oeis.org

2, 13, 114, 1115, 11116, 111117, 1111118, 11111119, 111111120, 1111111121, 11111111122, 111111111123, 1111111111124, 11111111111125, 111111111111126, 1111111111111127, 11111111111111128, 111111111111111129, 1111111111111111130
Offset: 1

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Comments

Partial sums of A062397. - Klaus Purath, Mar 18 2021

Examples

			a(12) = 111111111111 + 12 = 111111111123.
		

Crossrefs

Cf. A002275 (repunits).

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,1]]+n,{n,20}] (* Harvey P. Dale, May 15 2019 *)
  • Sage
    [gaussian_binomial(n,1,10)+n for n in range(1,20)] # Zerinvary Lajos, May 29 2009

Formula

a(n) = A002275(n) + n. - Michel Marcus, Mar 04 2018
a(n) = (10^n - 1)/9 + n. - Klaus Purath, Mar 18 2021

Extensions

More terms from Joshua Zucker, May 08 2006
An incorrect recurrence was deleted by N. J. A. Sloane, Sep 13 2009

A152577 a(n) = 10^(2*n - 1) + 1.

Original entry on oeis.org

11, 1001, 100001, 10000001, 1000000001, 100000000001, 10000000000001, 1000000000000001, 100000000000000001, 10000000000000000001, 1000000000000000000001, 100000000000000000000001
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2008

Keywords

Comments

These numbers are all divisible by 11. This follows from the identity a^n - b^n = (a+b)*(a^(n-1) - a^(n-2)*b + ... + b^(n-1)) for odd values of n. In this example a=10 and b=1 so a+b = 11. The sum of digits rule for divisibility by 11 also applies.
Bisection of A000533. Also, bisection of A062397. a(n) is also A084508(n+1) written in base 2. a(n) is also A087289(n-1) written in base 2. a(n) is also the concatenation of "1", 2(n-1) digits "0" and "1". - Omar E. Pol, Dec 13 2008

Examples

			From _Omar E. Pol_, Dec 14 2008: (Start)
n ....... a(n)
1 ....... 11
2 ...... 1001
3 ..... 100001
4 .... 10000001
5 ... 1000000001
(End)
		

Crossrefs

Cf. A000533, A062397, A084508, A087289. - Omar E. Pol, Dec 13 2008

Programs

  • Mathematica
    LinearRecurrence[{101,-100},{11,1001},20] (* Harvey P. Dale, Nov 05 2015 *)
  • PARI
    g(n)=forstep(x=1,n,2,y=(10^x+1);print1(y","))

Formula

a(n) = 100*a(n-1) - 99 (with a(1)=11). - Vincenzo Librandi, Dec 14 2010
G.f.: -11*x*(-1+10*x) / ( (100*x-1)*(x-1) ). - R. J. Mathar, Sep 01 2011
a(n) = 11*A095372(n-1). - R. J. Mathar, Sep 01 2011
a(n) = 101*a(n-1)-100*a(n-2). - Wesley Ivan Hurt, Apr 24 2021
E.g.f.: (exp(100*x) + 10*exp(x) - 11)/10. - Stefano Spezia, Mar 13 2025

A168576 a(n) = (10^n+1)^4.

Original entry on oeis.org

16, 14641, 104060401, 1004006004001, 10004000600040001, 100004000060000400001, 1000004000006000004000001, 10000004000000600000040000001, 100000004000000060000000400000001
Offset: 0

Views

Author

Jason Earls, Nov 30 2009

Keywords

Crossrefs

Programs

  • Magma
    [(10^n+1)^4: n in [0..10]]; // Vincenzo Librandi, May 26 2016
  • Mathematica
    Table[(10^n + 1)^4, {n, 0, 30}] (* Vincenzo Librandi, May 26 2016 *)
    (10^Range[0,20]+1)^4 (* or *) LinearRecurrence[{11111,-11222110,1122211000,-11111000000,10000000000},{16,14641,104060401,1004006004001,10004000600040001},20] (* Harvey P. Dale, Sep 10 2018 *)
  • PARI
    for(n=0,13,print1((10^n+1)^4","))
    

Formula

G.f. ( -16+163135*x-120938010*x^2+5861575000*x^3-14641000000*x^4 ) / ( (x-1)*(100*x-1)*(1000*x-1)*(10*x-1)*(10000*x-1) ). - R. J. Mathar, Jul 03 2012
a(n) = A000583(A062397(n)). - Michel Marcus, May 26 2016

A286315 Number of representations of 10^n as sum of 8 triangular numbers.

Original entry on oeis.org

8, 1332, 1030302, 1007141184, 1000302990372, 1000781337641904, 1000003970597090004, 1000751615026326041904, 1000203571630368710405892, 1004272191614371538730009600, 1000000970912716777250166728808, 1000834130646589459517111102258880
Offset: 0

Views

Author

Seiichi Manyama, May 06 2017

Keywords

Comments

a(n) is nearly 10^(3*n) because a(n) is almost (10^n+1)^3.

Examples

			a(0) = Sum_{d|2, 2/d == 1 mod 2} d^3 = 2^3 = 8.
a(1) = Sum_{d|11, 11/d == 1 mod 2} d^3 = 11^3 + 1^3 = 1332.
a(2) = Sum_{d|101, 101/d == 1 mod 2} d^3 = 101^3 + 1^3 = 1030302.
		

Crossrefs

Cf. A007331, A062397 (10^n+1), A168575 ((10^n+1)^3), A286314.

Formula

a(n) = A007331(10^n + 1).
a(n) = Sum_{d|10^n+1, (10^n+1)/d == 1 mod 2} d^3.

A072848 Largest prime factor of 10^(6*n) + 1.

Original entry on oeis.org

9901, 99990001, 999999000001, 9999999900000001, 39526741, 3199044596370769, 4458192223320340849, 75118313082913, 59779577156334533866654838281, 100009999999899989999000000010001, 2361000305507449, 111994624258035614290513943330720125433979169
Offset: 1

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

According to the link, there are only 18 "unique primes" below 10^50. The first four terms above are each unique primes, of periods 12, 24, 36 and 48, respectively, according to Caldwell and the cross-referenced sequences. These are precisely the only unique primes (less than 10^50 at least) with this type of digit pattern: m 9's, m-1 0's and 1, in that order. (Also a(10) is a unique prime of period 120.)

Examples

			10^(6*4)+1 = 17 * 5882353 * 9999999900000001, so a(4) = 9999999900000001, the largest prime factor.
		

Crossrefs

Cf. A040017 (unique period primes), A051627 (associated periods).

Programs

  • PARI
    for(n=1,12,v=factor(10^(6*n)+1); print1(v[matsize(v)[1],1],","))

Formula

a(n) = A003021(6n) = A006530(A062397(6n)). - Ray Chandler, May 11 2017

A215804 Odd numbers k such that 10^k + 1 can be written in the form a^2 + 2*b^2.

Original entry on oeis.org

1, 5, 7, 13, 19, 25, 29, 31, 35, 43, 53, 61, 65, 67, 71, 95, 125, 145, 155, 175, 179, 215, 239, 263, 265, 269, 293, 305
Offset: 1

Views

Author

V. Raman, Aug 23 2012

Keywords

Comments

These 10^k + 1 numbers have no prime factors of the form 5 or 7 (mod 8) to an odd power.

Crossrefs

Programs

  • PARI
    for(i=2, 100, a=factorint(10^i+1)~; has=0; for(j=1, #a, if(a[1, j]%8>4&&a[2, j]%2==1, has=1; break)); if(has==0&&i%2==1, print(i" -\t"a[1, ])))

Extensions

12 more terms from V. Raman, Aug 28 2012

A215805 Prime numbers p such that 10^p + 1 can be written in the form a^2 + 2*b^2.

Original entry on oeis.org

5, 7, 13, 19, 29, 31, 43, 53, 61, 67, 71, 179, 239, 263, 269, 293
Offset: 1

Views

Author

V. Raman, Aug 23 2012

Keywords

Comments

These numbers have no prime factors of the form 5 or 7 (mod 8) to an odd power.

Crossrefs

Programs

  • PARI
    forprime(i=2, 100, a=factorint(10^i+1)~; has=0; for(j=1, #a, if(a[1, j]%8>4&&a[2, j]%2==1, has=1; break)); if(has==0&&i%2==1, print(i" -\t"a[1, ])))

Extensions

5 more terms from V. Raman, Aug 29 2012

A234429 Numbers which are the digital sum of the square of some prime.

Original entry on oeis.org

4, 7, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178
Offset: 1

Views

Author

Keywords

Comments

A123157 sorted and duplicates removed.

Crossrefs

Programs

  • PARI
    terms(nn) = {v = []; forprime (p = 1, nn, v = concat(v, sumdigits(p^2));); vecsort(v,,8);} \\ Michel Marcus, Jan 08 2014

Formula

From Robert G. Wilson v, Sep 28 2014: (Start)
Except for 3, all primes are congruent to +-1 (mod 3). Therefore, (3n +- 1)^2 = 9n^2 +- 6n + 1 which is congruent to 1 (mod 3).
4: 2, 11, 101, ... (A062397);
7: 5, 149, 1049, ... (A226803);
9: only 3;
10: 19, 71, 179, 251, 449, 20249, 24499, 100549, ... (A226802);
13: 7, 29, 47, 61, 79, 151, 349, 389, 461, 601, 1051, 1249, 1429, ... (A165492);
16: 13, 23, 31, 41, 59, 103, 131, 139, 211, 229, 239, 347, 401, ... (A165459);
19: 17, 37, 53, 73, 89, 107, 109, 127, 181, 199, 269, 271, 379, ... (A165493);
22: 43, 97, 191, 227, 241, 317, 331, 353, 421, 439, 479, 569, 619, 641, ...;
25: 67, 113, 157, 193, 257, 283, 311, 337, 373, 409, 419, 463, ... (A229058);
28: 163, 197, 233, 307, 359, 397, 431, 467, 487, 523, 541, 577, 593, 631, ...;
31: 83, 137, 173, 223, 263, 277, 281, 367, 443, 457, 547, 587, ... (A165502);
34: 167, 293, 383, 563, 607, 617, 733, 787, 823, 859, 877, 941, 967, 977, ...;
37: 433, 613, 683, 773, 827, 863, 1063, 1117, 1187, 1223, 1567, ... (A165503);
40: 313, 947, 983, 1303, 1483, 1609, 1663, 1933, 1973, 1987, 2063, 2113, ...;
43: 887, 1697, 1723, 1867, 1913, 2083, 2137, 2417, 2543, 2633, ... (A165504);
46: 883, 937, 1367, 1637, 2213, 2447, 2683, 2791, 2917, 3313, 3583, 3833, ...;
49: 1667, 2383, 2437, 2617, 2963, 4219, 4457, 5087, 5281, 6113, 6163, ...;
... Also see A229058. (End)
Conjectures from Chai Wah Wu, Apr 16 2025: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 5.
G.f.: x*(2*x^4 - x^3 - x^2 - x + 4)/(x - 1)^2. (End)

Extensions

a(36) from Michel Marcus, Jan 08 2014
a(37)-a(54) from Robert G. Wilson v, Sep 28 2014
More terms from Giovanni Resta, Aug 15 2019

A261173 Table read by antidiagonals: T(n,k) = smallest prime p containing only digits 0 and 1 with n 0's and k 1's, or 0 if no such p exists.

Original entry on oeis.org

11, 0, 101, 0, 0, 0, 0, 10111, 0, 0, 0, 101111, 0, 0, 0, 0, 0, 0, 1011001, 0, 0, 0, 11110111, 0, 10011101, 10010101, 0, 0, 0, 101111111, 101101111, 0, 100100111, 101001001, 0, 0, 0, 0, 1010111111, 1001110111, 0, 1000011011, 1000001011, 0, 0
Offset: 0

Views

Author

Felix Fröhlich, Aug 10 2015

Keywords

Comments

T(n, k) = 0 if k is a term of A008585.
T(0, k) != 0 iff k is a term of A004023.
T(1, k) = A157709(k-2) for all k >= 4.
T(n, 2) != 0 iff A062397(n+1) is prime.
a(n) is in A168586 iff it is the smallest p in T with A007953(p) = k.

Examples

			Table T(n, k) starts
     k = 2        3        4        5
      -------------------------------------
n = 0 |  11       0        0        0
n = 1 |  101      0        10111    101111
n = 2 |  0        0        0        0
n = 3 |  0        0        1011001  10011101
		

Crossrefs

Programs

  • PARI
    a(n, k) = i=0; forprime(p=10^(n+k-1), (10^(n+k)-1)/9, if(vecmax(digits(p))==1 && sumdigits(p)==k, return(p); i++; break)); if(i==0, return(0))
    table(row, col) = for(x=0, row, for(y=2, col, print1(a(x, y), " ")); print(""))
    table(4, 5) \\ print 5 X 4 table

Extensions

More terms from Alois P. Heinz, Aug 17 2015
Previous Showing 31-40 of 43 results. Next