cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A133292 Period 9: repeat [1, 1, 2, 4, 7, 2, 7, 4, 2].

Original entry on oeis.org

1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2, 7, 4, 2, 1, 1, 2, 4, 7, 2
Offset: 0

Views

Author

Paul Curtz, Oct 17 2007

Keywords

Comments

For n>0, digital roots of centered 10-gonal numbers (A062786). - Colin Barker, Jan 30 2015
For n>0, also the digital roots of central polygonal numbers (the Lazy Caterer's sequence) A000124. - Peter M. Chema, Sep 17 2016

Crossrefs

Programs

  • Mathematica
    PadRight[{},111,{1,1,2,4,7,2,7,4,2}] (* Harvey P. Dale, Apr 29 2012 *)
  • PARI
    a(n)=[1,1,2,4,7,2,7,4,2][n%9+1] \\ Charles R Greathouse IV, Jun 02 2011
    
  • PARI
    Vec(-(2*x^8+4*x^7+7*x^6+2*x^5+7*x^4+4*x^3+2*x^2+x+1)/((x-1)*(x^2+x+1)*(x^6+x^3+1)) + O(x^100)) \\ Colin Barker, Apr 04 2015

Formula

G.f.: -(2*x^8+4*x^7+7*x^6+2*x^5+7*x^4+4*x^3+2*x^2+x+1) / ((x-1)*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Apr 04 2015
a(n) = a(n-9). - Wesley Ivan Hurt, May 09 2022

A127561 Array T(n,k) = n^2+5*n*k+5*k^2 read downwards antidiagonals, n,k>=0.

Original entry on oeis.org

0, 5, 1, 20, 11, 4, 45, 31, 19, 9, 80, 61, 44, 29, 16, 125, 101, 79, 59, 41, 25, 180, 151, 124, 99, 76, 55, 36, 245, 211, 179, 149, 121, 95, 71, 49, 320, 281, 244, 209, 176, 145, 116, 89, 64, 405, 361, 319, 279, 241, 205, 171, 139, 109, 81, 500, 451, 404, 359, 316, 275, 236, 199, 164, 131
Offset: 0

Views

Author

Kenneth J Ramsey, Jan 18 2007, Feb 05 2007, Feb 06 2007

Keywords

Comments

Lattice table of Fibonacci characteristic values from Wechsler's J determinant sequence A022344 uniquely position such that the row and column determine starting a,b values of a Fibonacci sequence having the same characteristic value.
A vector from (0,0) to any prime value P in the array does not pass through any other lattice point. If that vector is extended it passes through lattice points having successively the values 0, P*1^2, P*2^2, P*3^2, P*4^2 ... All primes ending in 1, 5 and 9 or the product thereof appear in the array, no prime ending in 3 or 7 appears in the array except in a square product which may be multiplied by a squarefree product of primes ending in 1, 5 or 9.
The table can be expanded by allowing negative arguments in the formula, but any positive value obtained can be expressed with nonnegative arguments.
The second row is the sequence A062786. The term in every succeeding row is 2* the term immediately above minus the next above term plus 2.
If the table is rearranged by shifting each column down by twice the column number, then the terms in second column would be equal to the row number squared plus the row number minus 1 and every succeeding term to the right would be equal to twice the left-hand term minus the next left-hand term minus 2.
It appears that any prime ending in 1,5, or 9 or any such prime times 5 appears only once in the table and that every power of such a prime or product thereof has one and only one nonnegative row and column position such that the row and column positions are coprime. A method for finding a coprime row and column position of the 2^n th power of any prime ending in 1,5,or 9, or of the product thereof, from the coprime row and column position of that prime or product is suggested by the discussion in the link titled "Wythoff Array, Pythagorean Triples, Primes".
It seems that if you stack the row and column positions of two numbers in the array that the determinant gives a column in which the product appears. Thus since the row and column position of 29 and 41 are 3,1 and 4,1 respectively then the product (41*29) appears in column 1*4 - 3*1 or column 1. The same value appears also in column -1 so 3*1-1*4 is a valid answer also. For our purposes however we choose the order that gives a positive value. Once the column number of the product is known it is easy to find the row number. There may be new determinant based math to find the row directly, but I don't know of any. It may happen that the row is negative, in which case the following transformation works a(r,c) = a(-r,c+r). Applied twice this transformation gives the original starting pair. I have yet to find any case in which one starts out with positive values for the row and column of each factor of a number appearing in the table and using the above determinant math cannot find positive values for the row and column of the product. I posted a few interesting results in the Cut-the-knot forum. Use the link given previously.

Examples

			T(0,1) = 5 because (0+2*1)^2 + 1*(0+2*1) - 1^2 = 5 and also because the Fibonacci sequence having the Horadam ID {a,b,1,1} with a = 0+2*1 and b = 1 has the characteristic value a^2 + b*a - b^2.
  0,  5, 20, 45, 80,125,180,245,320,405,500,... A033429
  1, 11, 31, 61,101,151,211,281,361,451,551,..  A062786
  4, 19, 44, 79,124,179,244,319,404,499,604,..  A134538
  9, 29, 59, 99,149,209,279,359,449,549,659,... A143198 (row 9)
 16, 41, 76,121,176,241,316,401,496,601,716,...
 25, 55, 95,145,205,275,355,445,545,655,775,..
 36, 71,116,171,236,311,396,491,596,711,836,...
 49, 89,139,199,269,349,439,539,649,769,899,...
 64,109,164,229,304,389,484,589,704,829,964,...
 81,131,191,261,341,431,531,641,761,891,1031,...
100,155,220,295,380,475,580,695,820,955,1100,...
		

Crossrefs

Formula

T(a,b) = (a+2b)^2 + b(a+2b) - b^2.

A134462 Centered decagonal palindromic primes; or palindromic primes of the form 5k^2 + 5k + 1.

Original entry on oeis.org

11, 101, 151, 1598951, 1128512158211, 104216919612401, 107635959536701, 106906347292743609601, 165901968762984246868642489267869109561
Offset: 1

Views

Author

Alexander Adamchuk, Oct 26 2007

Keywords

Comments

Sequence is the intersection of the palindromic primes = A002385 = {2, 3, 5, 7, 11, 101, 131, 151, ...} and the centered 10-gonal numbers = A062786 = {1, 11, 31, 61, 101, 151, ...}. Corresponding numbers k such that 5k^2 + 5k + 1 is a term of A134462 are listed in A134463 = {1, 4, 5, 565, 475081, ...}. Note that the first 4 terms of A134463 are palindromic as well.
a(9) > 10^25. - Donovan Johnson, Feb 13 2011
a(10) > 10^39. - Patrick De Geest, May 29 2021

Crossrefs

Cf. A002385 = Palindromic primes.
Cf. A062786 = Centered 10-gonal numbers.
Cf. A090562 = Primes of the form 5k^2 + 5k + 1.
Cf. A090563 = Values of k such that 5k^2 + 5k + 1 is a prime.
Cf. A134463 = Values of k such that 5k^2 + 5k + 1 is a palindromic prime.

Programs

  • Mathematica
    Do[ f=5k^2+5k+1; If[ PrimeQ[f] && FromDigits[ Reverse[ IntegerDigits[ f ] ] ] == f, Print[ f ] ], {k, 1, 500000} ]

Extensions

More terms from Tomas J. Bulka (tbulka(AT)rodincoil.com), Aug 30 2009
a(8) from Donovan Johnson, Feb 13 2011
a(9) from Patrick De Geest, May 29 2021

A134463 Values of k such that 5k^2 + 5k + 1 is a palindromic prime.

Original entry on oeis.org

1, 4, 5, 565, 475081, 4565455, 4639740, 4623988479, 5760242508141202328
Offset: 1

Views

Author

Alexander Adamchuk, Oct 26 2007

Keywords

Comments

Corresponding centered decagonal palindromic primes are 5k^2 + 5k + 1 = A134462 = {11, 101, 151, 1598951, 1128512158211, ...}. Note that the first 4 terms of A134463 are palindromic as well.
a(9) > 1414213562372. - Donovan Johnson, Feb 13 2011
a(10) > 14142135623730950488. - Patrick De Geest, May 29 2021

Crossrefs

Cf. A134462 = Centered decagonal palindromic primes; or palindromic primes of the form 5k^2 + 5k + 1.
Cf. A002385 = Palindromic primes.
Cf. A062786 = Centered 10-gonal numbers.
Cf. A090562 = Primes of the form 5k^2 + 5k + 1.
Cf. A090563 = Values of k such that 5k^2 + 5k + 1 is a prime.

Programs

  • Mathematica
    Do[ f=5k^2+5k+1; If[ PrimeQ[f] && FromDigits[ Reverse[ IntegerDigits[ f ] ] ] == f, Print[ k ] ], {k, 1, 500000} ]

Extensions

a(6), a(7) from D. S. McNeil, Mar 02 2009
a(8) from Donovan Johnson, Feb 13 2011
a(9) from Patrick De Geest, May 29 2021

A193248 Truncated dodecahedron, and truncated icosahedron with faces of centered polygons.

Original entry on oeis.org

1, 93, 455, 1267, 2709, 4961, 8203, 12615, 18377, 25669, 34671, 45563, 58525, 73737, 91379, 111631, 134673, 160685, 189847, 222339, 258341, 298033, 341595, 389207, 441049, 497301, 558143, 623755, 694317, 770009, 851011, 937503, 1029665, 1127677, 1231719
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a truncated dodecahedron or truncated icosahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered decagons (A062786)] & [centered hexagons (A003215) and centered pentagons (A005891)] respectively.

Crossrefs

Programs

  • Magma
    [30*n^3-45*n^2+17*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    Table[30n^3-45n^2+17n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,93,455,1267},40] (* Harvey P. Dale, Aug 28 2011 *)
  • PARI
    vector(40, n, 30*n^3 - 45*n^2 + 17*n - 1) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 30*n^3 - 45*n^2 + 17*n - 1.
G.f.: x*(1+x)*(x^2 + 88*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=93, a(3)=455, a(4)=1267. - Harvey P. Dale, Aug 28 2011
E.g.f.: 1 - (1 - 2*x - 45*x^2 - 30*x^3)*exp(x). - G. C. Greubel, Nov 10 2018

A332243 Starhex honeycomb numbers: a(n) = 13 + 60*n + 60*n^2.

Original entry on oeis.org

13, 133, 373, 733, 1213, 1813, 2533, 3373, 4333, 5413, 6613, 7933, 9373, 10933, 12613, 14413, 16333, 18373, 20533, 22813, 25213, 27733, 30373, 33133, 36013, 39013, 42133, 45373, 48733, 52213, 55813, 59533, 63373, 67333, 71413, 75613, 79933, 84373
Offset: 0

Views

Author

John Elias, Feb 07 2020

Keywords

Examples

			Example: a(2) = 13 + 60*2 + 60*2^2 = 373.
Illustration of initial terms:
.                               0
.                            0 0 0 0
.                             0 0 0
.                      0     0 0 0 0     0
.                   0 0 0 0 * * 0 * * 0 0 0 0
.                    0 0 0 * * * * * * 0 0 0
.                   0 0 0 0 * * 0 * * 0 0 0 0
.                      0 * * 0 0 0 0 * * 0
.                       * * * 0 0 0 * * *
.                      0 * * 0 0 0 0 * * 0
.                   0 0 0 0 * * 0 * * 0 0 0 0
.                    0 0 0 * * * * * * 0 0 0
.    0              0 0 0 0 * * 0 * * 0 0 0 0
. 0 * * 0              0     0 0 0 0     0
.  * 0 *                      0 0 0
. 0 * * 0                    0 0 0 0
.    0                          0
.
.    13                         133
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.

Crossrefs

Subsequence of A082369: cf. formula.

Programs

Formula

a(n) = 12*(5*n*(n + 1) + 1) + 1.
From Stefano Spezia, Feb 07 2020: (Start)
O.g.f.: (13 + 94*x + 13*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(13 + 120*x + 60*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2) for n > 2. (End)
a(n) = A082369(A001844(n)). - M. F. Hasler, Jun 09 2023

A125239 Smallest prime divisor of 10*T(n)+1 = 5*n*(n+1)+1, where T(n) = 1 + 2 + ... + n.

Original entry on oeis.org

11, 31, 61, 101, 151, 211, 281, 19, 11, 19, 661, 11, 911, 1051, 1201, 1361, 1531, 29, 1901, 11, 2311, 2531, 11, 3001, 3251, 3511, 19, 31, 19, 4651, 11, 5281, 31, 11, 6301, 6661, 79, 7411, 29, 59, 79, 11, 9461, 9901, 11, 19, 29, 19, 12251, 41, 89, 13781, 11
Offset: 1

Views

Author

Nick Hobson, Nov 25 2006

Keywords

Comments

All divisors of 10*T(n)+1 are congruent to 1 or -1 modulo 10; that is, they end in the decimal digit 1 or 9.

Examples

			10*T(9) + 1 = 5*9*10 + 1 = 451 = 11*41, so a(9) = 11.
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1,1]]&/@(10*Accumulate[Range[60]]+1) (* Harvey P. Dale, Dec 12 2011 *)
  • PARI
    a(n) = if(n<1, 0, factor(5*n*(n+1)+1)[1,1])

A141534 Derived from the centered polygonal numbers: start with the first triangular number, then the sum of the first square number and the second triangular number, then the sum of first pentagonal number, the second square number and the third triangular number, and so on and so on...

Original entry on oeis.org

1, 4, 11, 26, 55, 105, 184, 301, 466, 690, 985, 1364, 1841, 2431, 3150, 4015, 5044, 6256, 7671, 9310, 11195, 13349, 15796, 18561, 21670, 25150, 29029, 33336, 38101, 43355, 49130, 55459, 62376, 69916, 78115, 87010, 96639, 107041, 118256, 130325
Offset: 1

Views

Author

Dan Graybill (clopen(AT)comcast.net), Aug 12 2008

Keywords

Comments

Consider the array of triangular, square and centered polygonal numbers (irregular variant of A086272 and A086273):
1 3 6 10 15 21 28 36 45 55 A000217
1 4 9 16 25 36 49 64 81 100 A000290
1 6 16 31 51 76 106 141 181 226 A005891
1 7 19 37 61 91 127 169 217 271 A003215
1 8 22 43 71 106 148 197 253 316 A069099
1 9 25 49 81 121 169 225 289 361 A016754
1 10 28 55 91 136 190 253 325 406 A060544
1 11 31 61 101 151 211 281 361 451 A062786
1 12 34 67 111 166 232 309 397 496 A069125
1 13 37 73 121 181 253 337 433 541 A003154
1 14 40 79 131 196 274 365 469 586 A069126
1 15 43 85 141 211 295 393 505 631 A069127
etc. The sequence contains the antidiagonal sums of this array. - R. J. Mathar, Jun 05 2011
For comparison, the antidiagonal sums of A086270 are essentially A006522 starting at the 4th term. - R. J. Mathar, Sep 20 2008

Crossrefs

Cf. A000217.

Formula

a(n) = (n-1)*(n^3+11*n^2-38*n+120)/24, n>1. - R. J. Mathar, Sep 12 2008
G.f.: x*(1-x+x^2+x^3-x^5)/(1-x)^5. - Alexander R. Povolotsky, Jun 06 2011

A193253 Great rhombicosidodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 183, 905, 2527, 5409, 9911, 16393, 25215, 36737, 51319, 69321, 91103, 117025, 147447, 182729, 223231, 269313, 321335, 379657, 444639, 516641, 596023, 683145, 778367, 882049, 994551, 1116233, 1247455, 1388577, 1539959, 1701961, 1874943, 2059265, 2255287
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of n-2 edges and n-1 vertices to complete the centered polygon of each face.

Crossrefs

Cf. A001844 (centered squares), A062786 (centered decagons), and A003215 (centered hexagons).

Programs

  • Excel
    =60*ROW()^3-90*ROW()^2+32*ROW()-1 fill down  to desired size.
    
  • Magma
    [60*n^3-90*n^2+32*n-1: n in [1..40]] // Vincenzo Librandi, Feb 18 2012
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 183, 905, 2527}, 50] (* Vincenzo Librandi, Feb 18 2012 *)
    a[n_]:=60*n^3 - 90*n^2 + 32*n - 1 ; Array[a, 50] (* or *)
    CoefficientList[Series[(1 + x)*(1 + 178*x + x^2)/(1 - x)^4 , {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    a(n)=60*n^3-90*n^2+32*n-1 \\ Charles R Greathouse IV, Feb 12 2012
    

Formula

a(n) = 60*n^3 - 90*n^2 + 32*n - 1.
G.f.: x*(1 + 179*x + 179*x^2 + x^3)/(1-x)^4 = x*(1+x)*(1 + 178*x + x^2)/(1-x)^4. - Colin Barker, Feb 12 2012

A193448 a(n) = 4*(5*n^2 - 5*n + 1).

Original entry on oeis.org

4, 44, 124, 244, 404, 604, 844, 1124, 1444, 1804, 2204, 2644, 3124, 3644, 4204, 4804, 5444, 6124, 6844, 7604, 8404, 9244, 10124, 11044, 12004, 13004, 14044, 15124, 16244, 17404, 18604, 19844, 21124, 22444, 23804, 25204, 26644, 28124, 29644, 31204, 32804
Offset: 1

Views

Author

Giovanni Teofilatto, Jul 26 2011

Keywords

Comments

The natural numbers of the form 5*n^2-1, with n odd. See also A158491 for the cases where n is even. - Giovanni Teofilatto, Oct 10 2011

Crossrefs

Programs

Formula

a(n) = 4*A062786(n).
G.f.: -4*x*(1+8*x+x^2) / (x-1)^3. - R. J. Mathar, Aug 26 2011
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3. - Wesley Ivan Hurt, Nov 21 2015
Previous Showing 21-30 of 41 results. Next