A133293 First differences of A133292.
0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, -1, -1, -1, -1, -1).
Programs
-
Mathematica
Differences[PadRight[{},111,{1,1,2,4,7,2,7,4,2}]] (* Harvey P. Dale, Apr 29 2012 *) LinearRecurrence[{-1, -1, -1, -1, -1, -1, -1, -1},{0, 1, 2, 3, -5, 5, -3, -2},105] (* Ray Chandler, Aug 26 2015 *)
-
PARI
concat(0, Vec(x*(x^6+3*x^5+6*x^4+x^3+6*x^2+3*x+1)/((x^2+x+1)*(x^6+x^3+1)) + O(x^100))) \\ Colin Barker, Apr 04 2015
Formula
G.f.: x*(x^6+3*x^5+6*x^4+x^3+6*x^2+3*x+1) / ((x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Apr 04 2015
Comments