cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A063491 a(n) = (2*n - 1)*(3*n^2 - 3*n + 2)/2.

Original entry on oeis.org

1, 12, 50, 133, 279, 506, 832, 1275, 1853, 2584, 3486, 4577, 5875, 7398, 9164, 11191, 13497, 16100, 19018, 22269, 25871, 29842, 34200, 38963, 44149, 49776, 55862, 62425, 69483, 77054, 85156, 93807, 103025, 112828, 123234, 134261, 145927, 158250, 171248, 184939
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

A triangle has sides of lengths 6*n-3, 6*n^2-6*n+4, and 6*n^2-6*n+7; for n>2 its area is 6*sqrt(a(n)^2 - 1). - J. M. Bergot, Aug 30 2013
[The source of this is using (n,n+1), (n+1,n+2), and (n+2,n+3) as (a,b) in the creation of three Pythagorean triangles with sides b^2-a^2, 2*a*b, and a^2+b^2. Combine the three respective sides to create a new larger triangle, then find its area. It is not simply working backwards from the sequence. As well, the sequence has this as its first comment to show that the numbers are actually doing something to find a solution.]

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(3*n^2 -3*n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,12,50,133},40] (* Harvey P. Dale, Jun 05 2016 *)
    Table[(2*n-1)*(3*n^2 -3*n +2)/2, {n,1,30}] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(3*n^2 - 3*n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    
  • R
    a <- c(0, 1, 9, 38, 110)
    for(n in (length(a)+1):40)
      a[n] <- +4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4]
    a [Yosu Yurramendi, Sep 04 2013]
    

Formula

G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -1*a(n-4) n > 3, a(1)=1, a(2)=12, a(3)=50, a(4)=133. - Yosu Yurramendi, Sep 04 2013
E.g.f.: (-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017
From Bruce J. Nicholson, Jun 17 2020: (Start)
a(n) = A005448(n) * A005408(n-1).
a(n) = A004188(n) + A004188(n-1). (End)

A063492 a(n) = (2*n - 1)*(11*n^2 - 11*n + 6)/6.

Original entry on oeis.org

1, 14, 60, 161, 339, 616, 1014, 1555, 2261, 3154, 4256, 5589, 7175, 9036, 11194, 13671, 16489, 19670, 23236, 27209, 31611, 36464, 41790, 47611, 53949, 60826, 68264, 76285, 84911, 94164, 104066, 114639, 125905, 137886, 150604, 164081, 178339, 193400, 209286, 226019
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

Formula

G.f.: x*(1+x)*(1 + 9*x + x^2)/(1-x)^4. - Colin Barker, Apr 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Dec 16 2015
E.g.f.: (-6 + 12*x + 33*x^2 + 22*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A063493 a(n) = (2*n-1)*(13*n^2-13*n+6)/6.

Original entry on oeis.org

1, 16, 70, 189, 399, 726, 1196, 1835, 2669, 3724, 5026, 6601, 8475, 10674, 13224, 16151, 19481, 23240, 27454, 32149, 37351, 43086, 49380, 56259, 63749, 71876, 80666, 90145, 100339, 111274, 122976, 135471, 148785, 162944, 177974, 193901, 210751, 228550, 247324, 267099
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(13*n^2-13*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
  • Mathematica
    Table[(2 n - 1) (13 n^2 - 13 n + 6)/6, {n, 1, 40}] (* Bruno Berselli, Dec 16 2015 *)
    LinearRecurrence[{4,-6,4,-1}, {1,16,70,189}, 30] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(13*n^2 - 13*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-6+12*x+39*x^2+26*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
    
  • Python
    A063493_list, m = [], [26, -13, 2, 1]
    for _ in range(10**2):
        A063493_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    

Formula

G.f.: x*(1+x)*(1+11*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Dec 16 2015
E.g.f.: (-6 + 12*x + 39*x^2 + 26*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A063495 a(n) = (2*n-1)*(5*n^2-5*n+2)/2.

Original entry on oeis.org

1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344, 223721, 243163, 263700, 285362
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2n-1)(5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,18,80,217},40] (* Harvey P. Dale, Dec 18 2011 *)
  • PARI
    a(n) = (2*n - 1)*(5*n^2 - 5*n + 2)/2 \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

From Harvey P. Dale, Dec 18 2011: (Start)
a(1)=1, a(2)=18, a(3)=80, a(4)=217, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4).
G.f.: (x^3+14*x^2+14*x+1)/(1-x)^4. (End)
E.g.f.: (-2 + 4*x + 15*x^2 + 10*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017

A049480 a(n) = (2*n-1)*(n^2 -n +6)/6.

Original entry on oeis.org

1, 4, 10, 21, 39, 66, 104, 155, 221, 304, 406, 529, 675, 846, 1044, 1271, 1529, 1820, 2146, 2509, 2911, 3354, 3840, 4371, 4949, 5576, 6254, 6985, 7771, 8614, 9516, 10479, 11505, 12596, 13754, 14981, 16279, 17650, 19096, 20619, 22221
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(n^2-n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
    
  • Mathematica
    Table[(2n-1)(n^2-n+6)/6,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,10,21},50] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    a(n)=(2*n-1)*(n^2-n+6)/6 \\ Charles R Greathouse IV, Sep 24 2015
    
  • PARI
    x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017

Formula

From Harvey P. Dale, Jan 01 2012: (Start)
G.f.: x*(x^3 + 1)/(x-1)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4); a(1)=1, a(2)=4, a(3)=10, a(4)=21. (End)
E.g.f.: (-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A132366 Partial sum of centered tetrahedral numbers A005894.

Original entry on oeis.org

1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0

Views

Author

Jonathan Vos Post, Nov 09 2007

Keywords

Comments

From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) is the number of achiral colorings of the 5 tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors. An achiral arrangement is identical to its reflection. The 4-dimensional simplex is also called a 5-cell or pentachoron. Its Schläfli symbol is {3,3,3}.
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula for a(n-1) is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_1x_4^1
32 20 x_2^1x_3^1
2111 10 x_1^3x_2^1 (End)

Crossrefs

Cf. A337895 (oriented), A000389(n+4) (unoriented), A000389 (chiral), A331353 (5-cell edges, faces), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell), A338967 (120-cell, 600-cell).
a(n-1) = A325001(4,n).

Programs

  • Mathematica
    Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
    Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)

Formula

a(n) = (n^4 + 4*n^3 + 11*n^2 + 14*n + 6)/6 = (n^2+2*n+6)*(n+1)^2/6.
G.f.: -(x+1)*(x^2+1) / (x-1)^5. - Colin Barker, May 04 2013
From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) = n^2 * (5 + n^2) / 6.
a(n-1) = binomial(n+4,5) - binomial(n,5) = A000389(n+4) - A000389(n).
a(n-1) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n-1) = 2*A000389(n+4) - A337895(n) = A337895(n) - 2*A000389(n) .
G.f. for a(n-1): x * (x+1) * (x^2+1) / (1-x)^5. (End)
From Amiram Eldar, Feb 14 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/5 + 3/25 - 3*Pi*coth(sqrt(5)*Pi)/(5*sqrt(5)).
Sum_{n>=0} (-1)^n/a(n) = Pi^2/10 - 3/25 + 3*Pi*cosech(sqrt(5)*Pi)/(5*sqrt(5)). (End)
a(n) = A006007(n) + A006007(n+1) = A002415(n) + A002415(n+2). - R. J. Mathar, Jun 05 2025

Extensions

Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009

A185505 a(n) = (7*n^4 + 5*n^2)/12.

Original entry on oeis.org

1, 11, 51, 156, 375, 771, 1421, 2416, 3861, 5875, 8591, 12156, 16731, 22491, 29625, 38336, 48841, 61371, 76171, 93500, 113631, 136851, 163461, 193776, 228125, 266851, 310311, 358876, 412931, 472875, 539121, 612096, 692241, 780011, 875875, 980316, 1093831, 1216931, 1350141, 1494000, 1649061, 1815891, 1995071
Offset: 1

Views

Author

Clark Kimberling, Jan 29 2011

Keywords

Comments

a(n) is the sum of terms in the square [1,n]x[1,n] of the natural number array A000027; e.g., the [1,3]x[1,3] square is
1..2..4
3..5..8
6..9..13,
so that a(1) = 1, a(2) = 1+2+3+5 = 11, a(3) = 1+2+3+4+5+6+8+9+13 = 51.
Partial sums of A063490. - Omar E. Pol, Oct 23 2019

Examples

			a(1)=(7+5)/12, a(2)=(7*16+5*4)/12.
		

Crossrefs

Programs

  • Mathematica
    Table[(7*n^4+5*n^2)/12, {n,1,60}]
    LinearRecurrence[{5,-10,10,-5,1},{1,11,51,156,375},50] (* Harvey P. Dale, Jan 26 2024 *)
  • PARI
    a(n)=(7*n^4+5*n^2)/12 \\ Charles R Greathouse IV, Sep 05 2016

Formula

a(n) = (7*n^4 + 5*n^2)/12.
From Chai Wah Wu, Sep 05 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
G.f.: x*(1 + x)*(1 + 5*x + x^2)/(1 - x)^5. (End)
E.g.f.: (1/12)*x*(12 + 54*x + 42*x^2 + 7*x^3)*exp(x). - G. C. Greubel, Jul 07 2017

A145904 Square array read by antidiagonals: Hilbert transform of the Narayana numbers A001263.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 40, 31, 9, 1, 1, 21, 85, 105, 51, 11, 1, 1, 28, 161, 295, 219, 76, 13, 1, 1, 36, 280, 721, 771, 396, 106, 15, 1, 1, 45, 456, 1582, 2331, 1681, 650, 141, 17, 1
Offset: 0

Views

Author

Peter Bala, Oct 31 2008

Keywords

Comments

Refer to A145905 for the definition of the Hilbert transform of a lower triangular array. For the Hilbert transform of A008459, the array of type B Narayana numbers, see A108625.
This seems to be a duplicate of A273350. - Alois P. Heinz, Jun 04 2016. This could probably be proved by showing that the g.f.s are the same. - N. J. A. Sloane, Jul 02 2016

Examples

			The array begins
n\k|..0.....1.....2.....3.....4.....5
=====================================
0..|..1.....1.....1.....1.....1.....1
1..|..1.....3.....5.....7.....9....11
2..|..1.....6....16....31....51....76
3..|..1....10....40...105...219...396
4..|..1....15....85...295...771..1681
5..|..1....21...161...721..2331..6083
...
Row 2: (1 + 3x + x^2)/(1 - x)^3 = 1 + 6x + 16x^2 + 31x^3 + ... .
Row 3: (1 + 6x + 6x^2 + x^3)/(1 - x)^4 = 1 + 10x + 40x^2 + 105x^3 + ... .
		

Crossrefs

Cf. A001263, A005891 (row 2), A063490 (row 3), A108625 (Hilbert transform of h-vectors of type B associahedra).
Cf. also A273350.

Programs

  • Mathematica
    Table[1/(# + 1)*Sum[Binomial[# + 1, i - 1] Binomial[# + 1, i] Binomial[# + k - i + 1, k + 1 - i], {i, 0, k + 1}] &[m - k], {m, 0, 9}, {k, 0, m}] // Flatten (* Michael De Vlieger, Jan 15 2018 *)
  • Maxima
    taylor(((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y),x,0,10,y,0,10);
    T(n,m,k):=1/(n+1)*sum(binomial(n+1,i-1)*binomial(n+1,i)*binomial(n+m-i+1,m+1-i),i,0,m+1); /* Vladimir Kruchinin, Jan 15 2018 */

Formula

Row n generating function: 1/(n+1) * 1/(1-x) * Jacobi_P(n,1,1,(1+x)/(1-x)) = N_n(x)/(1-x)^n where N_n(x) denotes the shifted Narayana polynomial N_n(x) = sum{k = 1..n} A001263(k)*x^(k-1) of degree n-1.
Conjectural column n generating function: N_n(x^2)/(1-x)^(2n+1).
The entries in row n are given by the values of a polynomial function p_n(x) at x = 0,1,2,... . The first few are p_1(x) = 2x + 1, p_2(x) = (5x^2 + 5x + 2)/2, p_3(x) = (2x + 1)*(7x^2 + 7x + 6)/6 and p_4(x) = (7x^4 + 14x^3 + 21x^2 + 14x + 4)/4. These polynomials appear to have their zeros on the line Re x = -1/2; that is, the polynomials p_n(-x) appear to satisfy a Riemann hypothesis. The corresponding result for A108625 is true (see A142995 for details).
Contribution from Paul Barry, Jan 06 2009: (Start)
The g.f. for the corresponding number triangle is:
1/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y.... (a continued fraction). (End)
This g.f. satisfies x^2*y*g^2 - (1-x-x*y)*g + 1 = 0. - R. J. Mathar, Jun 16 2016
G.f.: ((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y). - Vladimir Kruchinin, Jan 15 2018
T(n,m) = 1/(n+1)*Sum_{i=0..m+1} C(n+1,i-1)*C(n+1,i)*C(n+m-i+1,m+1-i). - Vladimir Kruchinin, Jan 15 2018

A193218 Number of vertices in truncated tetrahedron with faces that are centered polygons.

Original entry on oeis.org

1, 21, 95, 259, 549, 1001, 1651, 2535, 3689, 5149, 6951, 9131, 11725, 14769, 18299, 22351, 26961, 32165, 37999, 44499, 51701, 59641, 68355, 77879, 88249, 99501, 111671, 124795, 138909, 154049, 170251, 187551, 205985, 225589, 246399, 268451, 291781, 316425
Offset: 1

Views

Author

Craig Ferguson, Jul 18 2011

Keywords

Comments

The sequence starts with a central vertex and expands outward with (n-1) centered polygonal pyramids producing a truncated tetrahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon in each face. For centered triangles see A005448 and centered hexagons A003215.
This sequence is the 18th in the series (1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496 and t = 36. While adjusting for offsets, the beginning sequence A049480 is generated by adding the square pyramidal numbers A000330 to the odd numbers A005408 and each subsequent sequence is found by adding another set of square pyramidals A000330. (T/2) * A000330(n) + A005408(n). At 30 * A000330 + A005408 = centered dodecahedral numbers, 36 * A000330 + A005408 = A193228 truncated octahedron and 90 * A000330 + A005408 = A193248 = truncated icosahedron and dodecahedron. All five of the "Centered Platonic Solids" numbers sequences are in this series of sequences. Also 4 out of five of the "truncated" platonic solid number sequences are in this series. - Bruce J. Nicholson, Jul 06 2018
It would be good to have a detailed description of how the sequence is constructed. Maybe in the Examples section? - N. J. A. Sloane, Sep 07 2018

Crossrefs

Cf. A260810 (partial sums).

Programs

  • Magma
    [6*n^3-9*n^2+5*n-1: n in [1..40]]; // Vincenzo Librandi, Aug 30 2011
  • Mathematica
    Table[6 n^3 - 9 n^2 + 5 n - 1, {n, 35}] (* Alonso del Arte, Jul 18 2011 *)
    CoefficientList[Series[(1+x)*(x^2+16*x+1)/(1-x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)

Formula

a(n) = 6*n^3 - 9*n^2 + 5*n - 1.
G.f.: x*(1+x)*(x^2+16*x+1) / (1-x)^4. - R. J. Mathar, Aug 26 2011
a(n) = 18 * A000330(n-1) + A005408(n-1) = A063496(n) + A006331(n-1). - Bruce J. Nicholson, Jul 06 2018

A355010 Array read by ascending antidiagonals: T(n, k) is the number of n-core partitions with k corners.

Original entry on oeis.org

1, 3, 1, 6, 5, 1, 10, 16, 7, 1, 15, 40, 31, 9, 1, 21, 85, 105, 51, 11, 1, 28, 161, 295, 219, 76, 13, 1, 36, 280, 721, 771, 396, 106, 15, 1, 45, 456, 1582, 2331, 1681, 650, 141, 17, 1, 55, 705, 3186, 6244, 6083, 3235, 995, 181, 19, 1, 66, 1045, 5985, 15156, 19348, 13663, 5685, 1445, 226, 21, 1
Offset: 2

Views

Author

Stefano Spezia, Jun 15 2022

Keywords

Comments

T(n, k) is also equal to the number of cornerless Motzkin paths of length 2*k + n - 1 with n - 1 flat steps (see Theorem 3.3 and Proposition 3.4 at pp. 13 - 14 in Cho et al.).
In proposition 3.4 in Cho et al., the Narayana number is defined as N(k, i) = binomial(k, i)*binomial(k, i-1)/k, unlike A001263.

Examples

			The array begins:
    1,  1,   1,   1,    1,    1,    1,    1, ...
    3,  5,   7,   9,   11,   13,   15,   17, ...
    6, 16,  31,  51,   76,  106,  141,  181, ...
   10, 40, 105, 219,  396,  650,  995, 1445, ...
   15, 85, 295, 771, 1681, 3235, 5685, 9325, ...
   ...
		

Crossrefs

Cf. A000012 (n = 2), A001263, A005408 (n = 3), A005891 (n = 4), A006007, A063490 (n = 5), A160747 (n = 6), A161680 (k = 1), A355011.

Programs

  • Mathematica
    T[n_,k_]:=Sum[Binomial[k,i]Binomial[k,i-1]Binomial[n+2(k-i),2k]/k,{i,Min[k,Floor[n/2]]}]; Flatten[Table[T[n-k+1,k],{n,2,12},{k,1,n-1}]]

Formula

T(n, k) = Sum_{i=1..min(k,floor(n/2))} N(k, i)*binomial(n+2*(k-i), 2*k), where N(k, i) = binomial(k, i)*binomial(k, i-1)/k. (See proposition 3.4 in Cho et al.).
T(n, 2) = A006007(n-1).
Previous Showing 11-20 of 21 results. Next