cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A214369 Decimal expansion of Sum_{n>=1} 1/(3^n-1).

Original entry on oeis.org

6, 8, 2, 1, 5, 3, 5, 0, 2, 6, 0, 5, 2, 3, 8, 0, 6, 6, 7, 6, 1, 2, 6, 3, 1, 8, 6, 2, 2, 6, 6, 2, 4, 0, 0, 9, 6, 4, 9, 1, 9, 0, 2, 4, 8, 3, 2, 6, 9, 0, 3, 4, 1, 9, 2, 2, 8, 2, 5, 7, 8, 4, 7, 1, 3, 6, 7, 7, 1, 8, 3, 4, 7, 7, 4, 1, 7, 8, 7, 3, 2, 9, 0, 0, 9, 6, 2, 1, 2, 6, 9, 0, 3, 0, 4, 5, 3, 3, 1, 3, 7, 5, 0, 3, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 14 2012

Keywords

Examples

			Equals 0.6821535026052380667...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(3^k-1), k=1..infinity), 120); # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/3)^(n^2)*(1 + 2/(3^n - 1)), n = 1..14 ), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    RealDigits[ NSum[1/(3^n - 1), {n, 1, Infinity}, WorkingPrecision -> 110, NSumTerms -> 100], 10, 105] // First (* or *) 1 - (Log[2] + QPolyGamma[0, 1, 1/3])/Log[3] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Jun 05 2013 *)
    x = 1/3; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* Robert G. Wilson v, Oct 12 2014 after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(n=1, 1/(3^n-1)) \\ Michel Marcus, Mar 11 2017

Formula

Equals Sum_{n>=1} 1/A024023(n).
Equals Sum_{k>=1} d(k)/3^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, May 17 2020

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A248721 Decimal expansion of Sum_{k>=1} 1/(4^k - 1).

Original entry on oeis.org

4, 2, 1, 0, 9, 7, 6, 8, 6, 0, 3, 3, 4, 2, 3, 7, 7, 7, 2, 9, 5, 9, 9, 0, 8, 8, 7, 9, 6, 7, 7, 1, 3, 0, 4, 8, 9, 6, 1, 4, 4, 1, 3, 3, 6, 3, 2, 4, 1, 1, 5, 4, 0, 4, 6, 0, 5, 9, 2, 0, 7, 9, 6, 7, 1, 2, 7, 7, 1, 3, 7, 0, 4, 8, 8, 7, 3, 9, 8, 0, 2, 7, 5, 1, 9, 0, 3, 6, 8, 4, 7, 5, 8, 6, 5, 0, 7, 9, 5, 3, 9, 2, 8, 4, 5
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.4210976860334237772959908879677130489614413363241154046059207967127713704887...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(4^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series after Joerg Arndt
    evalf( add( (1/4)^(n^2)*(1 + 2/(4^n - 1)), n = 1..13), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/4; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(4^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} x^(k^2)*(1+x^k)/(1-x^k) where x = 1/4 (the Lambert series evaluated at 1/4). - Joerg Arndt, Jun 03 2020
Equals Sum_{k>=1} d(k)/4^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A065443 Decimal expansion of Sum_{k=1..inf} 1/(2^k-1)^2.

Original entry on oeis.org

1, 1, 3, 7, 3, 3, 8, 7, 3, 6, 3, 4, 4, 1, 9, 6, 5, 9, 6, 6, 9, 6, 9, 1, 3, 3, 6, 8, 3, 0, 1, 3, 4, 7, 5, 8, 3, 8, 3, 0, 8, 4, 9, 3, 0, 9, 8, 1, 3, 8, 8, 2, 8, 8, 2, 0, 7, 0, 4, 4, 9, 3, 3, 1, 0, 4, 6, 4, 9, 3, 8, 6, 2, 5, 2, 0, 4, 0, 8, 9, 9, 8, 0, 0, 0, 5, 4, 0, 5, 0, 9, 0, 4, 2, 3, 5, 1, 3, 1, 1, 8, 4, 0, 3, 6
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Examples

			1.1373387363441965966969133683013475838308493098...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[1/(2^k - 1)^2, {k, 1, Infinity}, PrecisionGoal -> 40, AccuracyGoal -> 40, WorkingPrecision -> 500, NSumTerms -> 50, NSumExtraTerms -> 50]][[1]] (* Peter Bertok (peter(AT)bertok.com), Dec 04 2001 *)
    RealDigits[(Log[2] QPolyGamma[0, 1, 1/2] + QPolyGamma[1, 1, 1/2])/Log[2]^2 - 1, 10, 20][[1]] (* Eric W. Weisstein, Jun 02 2025 *)
  • PARI
    { default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)^2); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065443.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009

Formula

Equals Sum_{n>=1} 1/A060867(n).
From Amiram Eldar, Oct 16 2022: (Start)
Equals Sum_{k>=1} k/(2^(k+1)-1).
Equals A066766 - A065442. (End)
Equals Sum_{n >= 1} q^(n^2)*( (n - 1) + q^n - (n - 1)*q^(2*n) )/(1 - q^n)^2 evaluated at q = 1/2 (see A065608). - Peter Bala, Oct 16 2022

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Dec 04 2001

A173898 Decimal expansion of sum of the reciprocals of the Mersenne primes.

Original entry on oeis.org

5, 1, 6, 4, 5, 4, 1, 7, 8, 9, 4, 0, 7, 8, 8, 5, 6, 5, 3, 3, 0, 4, 8, 7, 3, 4, 2, 9, 7, 1, 5, 2, 2, 8, 5, 8, 8, 1, 5, 9, 6, 8, 5, 5, 3, 4, 1, 5, 4, 1, 9, 7, 0, 1, 4, 4, 1, 9, 3, 1, 0, 6, 5, 2, 7, 3, 5, 6, 8, 7, 0, 1, 4, 4, 0, 2, 1, 2, 7, 2, 3, 4, 9, 9, 1, 5, 4, 8, 8, 3, 2, 9, 3, 6, 6, 6, 2, 1, 5, 3, 7, 4, 0, 3, 2, 4
Offset: 0

Views

Author

Jonathan Vos Post, Mar 01 2010

Keywords

Comments

We know this a priori to be strictly less than the Erdős-Borwein constant (A065442), which Erdős (1948) showed to be irrational. This new constant would also seem to be irrational.

Examples

			Decimal expansion of (1/3) + (1/7) + (1/31) + (1/127) + (1/8191) + (1/131071) + (1/524287) + ... = .5164541789407885653304873429715228588159685534154197.
This has continued fraction expansion 0 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + ...)))) (see A209601).
		

Crossrefs

Cf. A209601, A000668, A065442 (decimal expansion of Erdos-Borwein constant), A000043, A001348, A046051, A057951-A057958, A034876, A124477, A135659, A019279, A061652, A000225.

Programs

  • Maple
    Digits := 120 ; L := [ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917 ] ;
    x := 0 ; for i from 1 to 30 do x := x+1.0/(2^op(i,L)-1 ); end do ;
  • Mathematica
    RealDigits[Sum[1/(2^p - 1), {p, MersennePrimeExponent[Range[14]]}], 10, 100][[1]] (* Amiram Eldar, May 24 2020 *)
  • PARI
    isM(p)=my(m=Mod(4,2^p-1));for(i=1,p-2,m=m^2-2);!m
    s=1/3;forprime(p=3,default(realprecision)*log(10)\log(2), if(isM(p), s+=1./(2^p-1)));s \\ Charles R Greathouse IV, Mar 22 2012

Formula

Sum_{i>=1} 1/A000668(i).

Extensions

Entry revised by N. J. A. Sloane, Mar 10 2012

A240736 Number of compositions of n having exactly one fixed point.

Original entry on oeis.org

1, 1, 1, 4, 7, 16, 29, 60, 120, 238, 479, 956, 1910, 3817, 7633, 15252, 30491, 60955, 121865, 243650, 487165, 974112, 1947851, 3895086, 7789153, 15576624, 31150481, 62296424, 124585395, 249158607, 498297297, 996562085, 1993071152, 3986055928, 7971971230
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Examples

			a(4) = 4: 13, 22, 112, 1111.
a(5) = 7: 14, 32, 131, 221, 1112, 1121, 11111.
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Column k=1 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 2))
        end:
    a:= n-> coeff(b(n, 1), x, 1):
    seq(a(n), n=1..40);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 2}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = A065442 * A048651 / 2 = 0.2319972162254452238942023675457837005318389885... - Vaclav Kotesovec, Sep 06 2014

A016152 a(n) = 4^(n-1)*(2^n-1).

Original entry on oeis.org

0, 1, 12, 112, 960, 7936, 64512, 520192, 4177920, 33488896, 268173312, 2146435072, 17175674880, 137422176256, 1099444518912, 8795824586752, 70367670435840, 562945658454016, 4503582447501312, 36028728299487232
Offset: 0

Views

Author

Keywords

Comments

Numbers whose binary representation is the concatenation of n digits 1 and 2(n-1) digits 0, for n>0. (See A147816.) - Omar E. Pol, Nov 13 2008
a(n) is the number of lattices L in Z^n such that the quotient group Z^n / L is C_8. - Álvar Ibeas, Nov 29 2015
a(n) is a maximum number of intercalates in a Latin square of order 2^n (see A092237). - Eduard I. Vatutin, Apr 30 2025

Crossrefs

Second column of triangle A075499.

Programs

Formula

From Barry E. Williams, Jan 17 2000: (Start)
a(n) = ((8^(n+1)) - 4^(n+1))/4.
a(n) = 12a(n-1) - 32a(n-2), n>0; a(0)=1. (End)
a(n) = (4^(n-1))*Stirling2(n+1, 2), n>=0, with Stirling2(n, m)=A008277(n, m).
a(n) = -4^(n-1) + 2*8^(n-1).
E.g.f. for a(n+1), n>=0: d^2/dx^2((((exp(4*x)-1)/4)^2)/2!) = -exp(4*x) + 2*exp(8*x).
G.f.: x/((1-4*x)*(1-8*x)).
((6+sqrt4)^n - (6-sqrt4)^n)/4 in Fibonacci form. Offset 1. a(3)=112. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) + A160873(n) + A006096(n) = A006096(n+2), for n > 2. - Álvar Ibeas, Nov 29 2015
Sum_{n>0} 1/a(n) = 4*E - 16/3, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022

A043569 Numbers whose base-2 representation has exactly 2 runs.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 16, 24, 28, 30, 32, 48, 56, 60, 62, 64, 96, 112, 120, 124, 126, 128, 192, 224, 240, 248, 252, 254, 256, 384, 448, 480, 496, 504, 508, 510, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044
Offset: 1

Views

Author

Keywords

Comments

Numbers whose binary representation contains the bit string "10" but not "01". Subsequence of A062289; set difference A062289 minus A101082. - Rick L. Shepherd, Nov 29 2004
Mersenne numbers (A000225) times powers of 2 (A000079). Therefore this sequence contains the even perfect numbers (A000396). - Alonso del Arte, Apr 21 2006

Crossrefs

Programs

  • Maple
    a:=proc(n) local nn,nd: nn:=convert(n,base,2): nd:={seq(nn[j]-nn[j-1],j=2..nops(nn))}: if n=2 then 2 elif nd={0,1} then n else fi end: seq(a(n),n=1..2100); # Emeric Deutsch, Apr 21 2006
  • Mathematica
    Take[Sort[Flatten[Table[(2^x - 1)*(2^y), {x, 32}, {y, 32}]]], 54] (* Alonso del Arte, Apr 21 2006 *)
    Select[Range[2500],Length[Split[IntegerDigits[#,2]]]==2&] (* or *) Select[Range[2500],SequenceCount[IntegerDigits[#,2],{1,0}]>0 && SequenceCount[ IntegerDigits[#,2],{0,1}]==0&] (* Harvey P. Dale, Oct 04 2024 *)
  • Python
    def ok(n): b = bin(n)[2:]; return "10" in b and "01" not in b
    print([m for m in range(2045) if ok(m)]) # Michael S. Branicky, Feb 04 2021
    
  • Python
    def a_next(a_n): t = a_n >> 1; return (a_n | t) + (t & 1)
    a_n = 2; a = []
    for i in range(54): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022

Formula

This sequence is twice A023758. - Franklin T. Adams-Watters, Apr 21 2006
Sum_{n>=1} 1/a(n) = A065442. - Amiram Eldar, Feb 20 2022
A007814(a(n)) = A004736(n). - Lorenzo Sauras Altuzarra, Feb 01 2023

Extensions

More terms from Rick L. Shepherd, Nov 29 2004

A248722 Decimal expansion of Sum_{k>=1} 1/(5^k - 1).

Original entry on oeis.org

3, 0, 1, 7, 3, 3, 8, 5, 3, 5, 9, 7, 9, 7, 2, 4, 5, 7, 9, 4, 8, 1, 6, 2, 1, 5, 9, 3, 9, 3, 9, 9, 1, 1, 9, 2, 6, 2, 3, 0, 0, 9, 4, 3, 1, 5, 1, 7, 1, 5, 7, 7, 2, 0, 3, 9, 5, 7, 9, 1, 9, 2, 3, 3, 1, 8, 3, 7, 9, 8, 2, 5, 8, 9, 2, 0, 3, 4, 3, 3, 5, 2, 7, 5, 8, 5, 9, 4, 9, 2, 9, 7, 8, 7, 5, 8, 1, 6, 9, 6, 8, 3, 5, 5, 7
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.301733853597972457948162159393991192623009431517157720395791923318379825892...
		

Crossrefs

Programs

  • Maple
    evalf( add( (1/5)^(n^2)*(1 + 2/(5^n - 1)), n = 1..12), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/5; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    sumpos(k=1,1/(5^k-1)) \\ M. F. Hasler, Oct 15 2014

Formula

Equals Sum_{k>=1} d(k)/5^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248723 Decimal expansion of the Sum_{k>=1} 1/(6^k - 1).

Original entry on oeis.org

2, 3, 4, 1, 4, 9, 1, 3, 0, 1, 3, 4, 8, 0, 9, 2, 0, 6, 4, 8, 5, 1, 1, 1, 6, 7, 2, 8, 1, 3, 8, 7, 2, 9, 1, 8, 5, 4, 6, 3, 6, 1, 0, 3, 4, 7, 8, 6, 5, 1, 3, 8, 9, 8, 5, 2, 2, 4, 2, 1, 3, 8, 6, 7, 1, 0, 2, 3, 8, 1, 9, 8, 6, 6, 2, 8, 7, 9, 2, 3, 2, 2, 5, 6, 7, 8, 8, 7, 9, 5, 0, 1, 8, 7, 8, 3, 9, 1, 2, 6, 6, 5, 5, 3, 4
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.2341491301348092064851116728138729185463610347865138985224213867102381986628...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(6^k-1), k=1..infinity),120); # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/6)^(n^2)*(1 + 2/(6^n - 1)), n = 1..11), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/6; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(6^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/6^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248724 Decimal expansion of Sum_{k>=1} 1/(7^k - 1).

Original entry on oeis.org

1, 9, 0, 9, 1, 0, 0, 6, 2, 4, 1, 0, 2, 6, 1, 5, 7, 8, 2, 0, 2, 1, 9, 9, 6, 4, 4, 4, 1, 7, 6, 9, 1, 1, 6, 8, 7, 6, 9, 2, 6, 8, 4, 7, 6, 0, 0, 8, 2, 6, 6, 4, 0, 8, 3, 3, 4, 7, 7, 1, 1, 0, 8, 6, 4, 0, 9, 9, 9, 6, 7, 5, 5, 8, 4, 6, 3, 0, 1, 4, 4, 0, 3, 8, 0, 0, 9, 1, 1, 6, 1, 6, 5, 9, 7, 0, 9, 1, 1, 9, 3, 4, 5, 6, 1
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.1909100624102615782021996444176911687692684760082664083347711086409996755846...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(7^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/7)^(n^2)*(1 + 2/(7^n - 1)), n = 1..11), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/7; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(7^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/7^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020
Previous Showing 11-20 of 58 results. Next