cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A285337 a(n) = denominator of A065642(n)/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 8, 1, 5, 1, 1, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 7, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Crossrefs

Cf. A065642, A285100 (positions of ones), A284342 (positions of terms > 1).
Cf. A285336 for the numerator.

Programs

  • Python
    from sympy import primefactors, prod, Integer
    def a007947(n): return 1 if n<2 else prod(primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n += r
        while a007947(n)!=r:
            n+=r
        return n
    def a(n): return (a065642(n)/Integer(n)).denominator # Indranil Ghosh, Apr 20 2017
  • Scheme
    (define (A285337 n) (denominator (/ (A065642 n) n)))
    

A285323 a(n) = A065642(A065642(A019565(n))) / A019565(n).

Original entry on oeis.org

1, 4, 9, 3, 25, 4, 5, 3, 49, 4, 7, 3, 7, 4, 5, 3, 121, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 169, 4, 9, 3, 13, 4, 5, 3, 13, 4, 7, 3, 7, 4, 5, 3, 13, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 289, 4, 9, 3, 17, 4, 5, 3, 17, 4, 7, 3, 7, 4, 5, 3, 17, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 17, 4, 9, 3, 13, 4, 5, 3, 13, 4, 7, 3, 7, 4, 5, 3
Offset: 0

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Comments

After the initial a(0)=1, the third row of array A285321 divided by its first row. After 1, all terms are either primes or squares of primes. See A285110.
The sequence is completely determined by the positions of two least significant 1-bits of n: After initial zero, if n is a power of two (only one 1-bit present) or if prime(1+A285099(n)) > prime(1+A007814(n))^2, a(n) = prime(1+A007814(n))^2 = A020639(A019565(n))^2, otherwise a(n) = prime(1+A285099(n)) = A014673(A019565(n)).

Crossrefs

Programs

Formula

a(n) = A065642(A065642(A019565(n))) / A019565(n).

A285336 a(n) = numerator of A065642(n)/n.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 3, 13, 2, 3, 2, 17, 4, 19, 2, 3, 2, 23, 3, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 4, 37, 2, 3, 5, 41, 2, 43, 2, 5, 2, 47, 9, 7, 8, 3, 2, 53, 4, 5, 7, 3, 2, 59, 3, 61, 2, 7, 2, 5, 2, 67, 2, 3, 2, 71, 4, 73, 2, 9, 2, 7, 2, 79, 5, 3, 2, 83, 3, 5, 2, 3, 2, 89, 4, 7, 2, 3, 2, 5, 9, 97, 8, 3, 8, 101, 2, 103, 2, 3, 2, 107, 4, 109, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Crossrefs

Cf. A065642.
Cf. A285337 for the denominator.

Programs

  • Python
    from sympy import primefactors, prod, Integer
    def a007947(n): return 1 if n<2 else prod(primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n += r
        while a007947(n)!=r:
            n += r
        return n
    def a(n): return (a065642(n)/Integer(n)).numerator # Indranil Ghosh, Apr 20 2017
  • Scheme
    (define (A285336 n) (numerator (/ (A065642 n) n)))
    

A322817 a(n) = A001222(A065642(n)) - A001222(n), where A065642(n) gives the next larger m that has same prime factors as n (ignoring multiplicity), and A001222 gives the number of prime factors, when counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 0, 1, 1, -1, 1, 2, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 2, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Examples

			For n = 2 = 2^1, the next larger number with only 2's as its prime factors is 4 = 2^2, thus a(2) = 1.
For n = 12 = 2^2 * 3^1, the next larger number with the same prime factors is 18 = 2^1 * 3^2, with the same value of A001222, thus a(12) = 0.
For n = 40 = 2^3 * 5^1, the next larger number with the same prime factors is 50 = 2^1 * 5^2. While 40 has 3+1 = 4 prime factors in total, 50 has 1+2 = 3, thus a(40) = 3 - 4 = -1.
For n = 50, the next larger number with the same prime factors is 80 = 2^4 * 5^1, thus a(50) = (4+1)-(2+1) = 2.
		

Crossrefs

Programs

Formula

a(n) = A001222(A065642(n)) - A001222(n).

A340306 Numbers k such that A065642(k) = A081761(k).

Original entry on oeis.org

12, 420, 540, 2268, 7020, 10692, 11340, 17640, 24948, 42750, 56700, 87120, 152460, 409500, 413100, 609840, 996072, 2478600, 3822000, 5287500, 9189180, 9447840, 14871600, 20241900, 20567520, 23510592, 23832800, 27766152, 28552500, 39358800, 41135040, 44783648, 49985100
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2021

Keywords

Comments

Numbers k such that the least number that is larger than k and has the same prime signature as k and the least number that is larger than k and has the same set of distinct prime divisors as k are equal.

Examples

			12 is a term since the A065642(12) = A081761(12) = 18, i.e., 18 = 2 * 3^2 is the least number with the same set of prime divisors, {2, 3}, and the same prime signature as 12 = 2^2 * 3.
		

Crossrefs

Intersection of A340302 and A340305.

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; next[n_] := Module[{r = rad[n]}, SelectFirst[Range[n + 1, n^2], rad[#] == r &]]; sig[n_] := Sort@FactorInteger[n][[;; , 2]]; nextsig[n_] := Module[{sign = sig[n], k = n + 1}, While[sig[k] != sign, k++]; k]; Select[Range[2, 600], sig[#] == sig[next[#]] && rad[#] == rad[nextsig[#]] &]

A007947 Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller, Mar 15 1996

Keywords

Comments

Multiplicative with a(p^e) = p.
Product of the distinct prime factors of n.
a(k)=k for k=squarefree numbers A005117. - Lekraj Beedassy, Sep 05 2006
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), b*c = A019554(n) = "outer square root" of n, and a(n) = lcm(a(b),c). Unless n is biquadrateful (A046101), a(n) = lcm(b,c). [Edited by Jeppe Stig Nielsen, Oct 10 2021, and Andrey Zabolotskiy, Feb 12 2025]
a(n) = A128651(A129132(n-1) + 2) for n > 1. - Reinhard Zumkeller, Mar 30 2007
Also the least common multiple of the prime factors of n. - Peter Luschny, Mar 22 2011
The Mobius transform of the sequence generates the sequence of absolute values of A097945. - R. J. Mathar, Apr 04 2011
Appears to be the period length of k^n mod n. For example, n^12 mod 12 has period 6, repeating 1,4,9,4,1,0, so a(12)= 6. - Gary Detlefs, Apr 14 2013
a(n) differs from A014963(n) when n is a term of A024619. - Eric Desbiaux, Mar 24 2014
a(n) is also the smallest base (also termed radix) for which the representation of 1/n is of finite length. For example a(12) = 6 and 1/12 in base 6 is 0.03, which is of finite length. - Lee A. Newberg, Jul 27 2016
a(n) is also the divisor k of n such that d(k) = 2^omega(n). a(n) is also the smallest divisor u of n such that n divides u^n. - Juri-Stepan Gerasimov, Apr 06 2017

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
		

Crossrefs

See A007913, A062953, A000188, A019554, A003557, A066503, A087207 for other properties related to square and squarefree divisors of n.
More general factorization-related properties, specific to n: A020639, A028234, A020500, A010051, A284318, A000005, A001221, A005361, A034444, A014963, A128651, A267116.
Range of values is A005117.
Bisections: A099984, A099985.
Sequences about numbers that have the same squarefree kernel: A065642, array A284311 (A284457).
A003961, A059896 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a007947 = product . a027748_row  -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
    
  • Maple
    with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
    A007947 := n -> ilcm(op(numtheory[factorset](n))):
    seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
    A:= n -> convert(numtheory:-factorset(n),`*`):
    seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
    seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
    Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
    a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
    Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
    
  • Python
    from sympy import primefactors, prod
    def a(n): return 1 if n < 2 else prod(primefactors(n))
    [a(n) for n in range(1, 51)]  # Indranil Ghosh, Apr 16 2017
    
  • Sage
    def A007947(n): return mul(p for p in prime_divisors(n))
    [A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
    
  • Scheme
    (define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017

Formula

If n = Product_j (p_j^k_j) where p_j are distinct primes, then a(n) = Product_j (p_j).
a(n) = Product_{k=1..A001221(n)} A027748(n,k). - Reinhard Zumkeller, Aug 27 2011
Dirichlet g.f.: zeta(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jan 21 2012
a(n) = Sum_{d|n} phi(d) * mu(d)^2 = Sum_{d|n} |A097945(d)|. - Enrique Pérez Herrero, Apr 23 2012
a(n) = Product_{d|n} d^moebius(n/d) (see Billal link). - Michel Marcus, Jan 06 2015
a(n) = n/( Sum_{k=1..n} (floor(k^n/n)-floor((k^n - 1)/n)) ) = e^(Sum_{k=2..n} (floor(n/k) - floor((n-1)/k))*A010051(k)*M(k)) where M(n) is the Mangoldt function. - Anthony Browne, Jun 17 2016
a(n) = n/A003557(n). - Juri-Stepan Gerasimov, Apr 07 2017
G.f.: Sum_{k>=1} phi(k)*mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017
From Antti Karttunen, Jun 18 2017: (Start)
a(1) = 1; for n > 1, a(n) = A020639(n) * a(A028234(n)).
a(n) = A019565(A087207(n)). (End)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)). - Vaclav Kotesovec, Dec 18 2019
From Peter Munn, Jan 01 2020: (Start)
a(A059896(n,k)) = A059896(a(n), a(k)).
a(A003961(n)) = A003961(a(n)).
a(n^2) = a(n).
a(A225546(n)) = A019565(A267116(n)). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463/2. - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)).
For n>1, Sum_{k=1..n} a(gcd(n,k))*mu(a(gcd(n,k)))*phi(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*mu(a(n/gcd(n,k)))*phi(gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*psi(d), where omega = A001221 and psi = A001615. - Ridouane Oudra, Aug 01 2025

Extensions

More terms from several people including David W. Wilson
Definition expanded by Jonathan Sondow, Apr 26 2013

A285328 a(n) = 1 if n is squarefree (A005117), otherwise a(n) = Max {m < n | same prime factors as n, ignoring multiplicity}.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 6, 1, 1, 1, 8, 1, 12, 1, 10, 1, 1, 1, 18, 5, 1, 9, 14, 1, 1, 1, 16, 1, 1, 1, 24, 1, 1, 1, 20, 1, 1, 1, 22, 15, 1, 1, 36, 7, 40, 1, 26, 1, 48, 1, 28, 1, 1, 1, 30, 1, 1, 21, 32, 1, 1, 1, 34, 1, 1, 1, 54, 1, 1, 45, 38, 1, 1, 1, 50, 27, 1, 1, 42, 1, 1, 1, 44, 1, 60, 1, 46, 1, 1, 1, 72, 1, 56, 33, 80, 1, 1, 1, 52, 1, 1, 1, 96
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Examples

			From _Michael De Vlieger_, Dec 31 2018: (Start)
a(1) = 1 since 1 is squarefree.
a(2) = 1 since 2 is squarefree.
a(4) = 2 since 4 is not squarefree and 2 is the largest number less than 4 that has all the distinct prime divisors that 4 has.
a(6) = 1 since 6 is squarefree.
a(12) = 6 since 12 is not squarefree and 6 is the largest number less than 12 that has all the distinct prime divisors that 12 has. (6 is also the squarefree root of 12).
a(16) = 8 since 16 is not squarefree and 8 is the largest number less than 16 that has all the distinct prime divisors that 16 has.
a(18) = 12 since 18 is not squarefree and 12 is the largest number less than 18 that has all the distinct prime divisors that 18 has.
(End)
		

Crossrefs

A left inverse of A065642.
Cf. also A079277.

Programs

  • Mathematica
    Table[With[{r = DivisorSum[n, EulerPhi[#] Abs@ MoebiusMu[#] &]}, If[MoebiusMu@ n != 0, 1, SelectFirst[Range[n - 2, 2, -1], DivisorSum[#, EulerPhi[#] Abs@ MoebiusMu[#] &] == r &]]], {n, 108}] (* Michael De Vlieger, Dec 31 2018 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A285328(n) = { my(r=A007947(n)); if(core(n)==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n); }; \\ After Python-code below - Antti Karttunen, Apr 17 2017
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))),(n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); }; \\ Version optimized for powers of 2.
    
  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a(n):
        if core(n) == n: return 1
        r = a007947(n)
        k = n - r
        while k>0:
            if a007947(k) == r: return k
            else: k -= r
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh and Antti Karttunen, Apr 17 2017
  • Scheme
    (definec (A285328 n) (if (not (zero? (A008683 n))) 1 (let ((k (A007947 n))) (let loop ((n (- n k))) (if (= (A007947 n) k) n (loop (- n k)))))))
    

Formula

If A008683(n) <> 0, a(n) = 1, otherwise a(n) = the largest number k < n for which A007947(k) = A007947(n).
Other identities. For all n >= 1:
a(A065642(n)) = n.

A284311 Array T(n,k) read by antidiagonals (downward): T(1,k) = A005117(k+1) (squarefree numbers > 1); for n > 1, columns are nonsquarefree numbers (in ascending order) with exactly the same prime factors as T(1,k).

Original entry on oeis.org

2, 3, 4, 5, 9, 8, 6, 25, 27, 16, 7, 12, 125, 81, 32, 10, 49, 18, 625, 243, 64, 11, 20, 343, 24, 3125, 729, 128, 13, 121, 40, 2401, 36, 15625, 2187, 256, 14, 169, 1331, 50, 16807, 48, 78125, 6561, 512, 15, 28, 2197, 14641, 80, 117649, 54, 390625, 19683, 1024
Offset: 1

Views

Author

Bob Selcoe, Mar 24 2017

Keywords

Comments

A permutation of the natural numbers > 1.
T(1,k)= A005117(m) with m > 1; terms in column k = T(1,k) * A162306(T(1,k)) only not bounded by T(1,k). Let T(1,k) = b. Terms in column k are multiples of b and numbers c such that c | b^e with e >= 0. Alternatively, terms in column k are multiples bc with c those numbers whose prime divisors p also divide b. - Michael De Vlieger, Mar 25 2017

Examples

			Array starts:
    2    3     5  6      7  10       11        13  14  15
    4    9    25 12     49  20      121       169  28  45
    8   27   125 18    343  40     1331      2197  56  75
   16   81   625 24   2401  50    14641    371293  98 135
   32  243  3125 36  16807  80   161051   4826809 112 225
   64  729 15625 48 117649 100  1771561  62748517 196 375
  128 2187 78125 54 823543 160 19487171 815730721 224 405
Column 6 is: T(1,6) = 2*5; T(2,6) = 2^2*5; T(3,6) = 2^3*5; T(4,6) = 2*5^2; T(5,6) = 2^4*5, etc.
		

Crossrefs

Cf. A005117 (squarefree numbers), A033845 (column 4), columns 1,2,3,5 are powers of primes, A033846 (column 6), A033847 (column 9), A033849 (column 10).
The columns that are powers of primes have indices A071403(n) - 1. - Michel Marcus, Mar 24 2017
See also A007947; the k-th column of the array corresponds to the numbers with radical A005117(k+1). - Rémy Sigrist, Mar 24 2017
Cf. A284457 (this sequence read by antidiagonals upwards), A285321 (a similar array, but columns come in different order).
Cf. A065642.
Cf. A008479 (index of the row where n is located), A285329 (of the column).

Programs

  • Mathematica
    f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs[k], While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Mar 25 2017 *)
  • Scheme
    (define (A284311 n) (A284311bi  (A002260 n) (A004736 n)))
    (define (A284311bi row col) (if (= 1 row) (A005117 (+ 1 col)) (A065642 (A284311bi (- row 1) col))))
    ;; Antti Karttunen, Apr 17 2017

Formula

From Antti Karttunen, Apr 17 2017: (Start)
A(1,k) = A005117(1+k), A(n,k) = A065642(A(n-1,k)).
A(A008479(n), A285329(n)) = n for all n >= 2.
(End)

A284457 Square array whose rows list numbers with the same squarefree kernel (A007947): Transpose of A284311.

Original entry on oeis.org

2, 4, 3, 8, 9, 5, 16, 27, 25, 6, 32, 81, 125, 12, 7, 64, 243, 625, 18, 49, 10, 128, 729, 3125, 24, 343, 20, 11, 256, 2187, 15625, 36, 2401, 40, 121, 13, 512, 6561, 78125, 48, 16807, 50, 1331, 169, 14, 1024, 19683, 390625, 54, 117649, 80, 14641, 2197, 28, 15
Offset: 1

Views

Author

Bob Selcoe, Mar 27 2017

Keywords

Comments

The first column contains the squarefree numbers A005117; each row lists all numbers having the same prime divisors. If T[m,1] is prime then the row contains the powers of that prime. Yields A182944 if only these rows with prime powers (A000961) are kept. - M. F. Hasler, Mar 27 2017
See A284311 for further details.

Examples

			Array starts:
    2    4     8     16      32      64      128
    3    9    27     81     243     729     2187
    5   25   125    625    3125   15625    78125
    6   12    18     24      36      48       54
    7   49   343   2401   16807  117649   823543
   10   20    40     50      80     100      160
   ...
Row 6 is: T[1,6] = 2*5; T[2,6] = 2^2*5; T[3,6] = 2^3*5; T[4,6] = 2*5^2; T[5,6] = 2^4*5, etc.
		

Crossrefs

Cf. A008479 (index of the column where n is located), A285329 (of the row).

Programs

  • Mathematica
    f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs@ k, While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten
  • PARI
    A284457(m,n)={for(a=2,m^2+1,(core(a)!=a||m--)&&next;m=factor(a)[,1]; for(k=1,9e9,factor(k*a)[,1]==m&&!n--&&return(k*a)))} \\ M. F. Hasler, Mar 27 2017
    
  • Scheme
    (define (A284457 n) (A284311bi (A004736 n) (A002260 n))) ;; For A284311bi, see A284311. - Antti Karttunen, Apr 17 2017

Formula

From Antti Karttunen, Apr 17 2017: (Start)
A(n,1) = A005117(1+n), A(n,k) = A065642(A(n,k-1)). [A "dispersion" of A065642.]
A(A285329(n), A008479(n)) = n for all n >= 2.(End)

Extensions

Edited by M. F. Hasler, Mar 27 2017

A081377 Numbers n such that the set of prime divisors of phi(n) is equal to the set of prime divisors of sigma(n).

Original entry on oeis.org

1, 3, 14, 35, 42, 70, 105, 119, 209, 210, 238, 248, 297, 357, 418, 477, 594, 595, 616, 627, 714, 744, 954, 1045, 1178, 1190, 1240, 1254, 1463, 1485, 1672, 1674, 1736, 1785, 1848, 1863, 2079, 2090, 2376, 2385, 2540, 2728, 2926, 2945, 2970, 3080, 3135, 3302
Offset: 1

Views

Author

Labos Elemer, Mar 26 2003

Keywords

Comments

The multiplicities of the divisors are to be ignored.
Is it true that 1 is the only term in both this sequence and A055744? - Farideh Firoozbakht, Jul 01 2008. Answer from Luke Pebody, Jul 10 2008: No! In fact the numbers 103654150315463023813006470 and 6534150553412193640795377701190 are in both sequences.

Examples

			n=418=2*11*19: sigma(418)=720, phi[418]=180, common prime factor set ={2,3,5}
k = 477 = 3*3*53: sigma(477) = 702 = 2*3*3*3*13; phi(477) = 312 = 2*2*2*3*13; common factor set: {2,3,13}.
phi(89999)=66528=2^5*3^3*7*11 and sigma(89999)=118272=2^9*3*7*11 so 89999 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=ba[DivisorSigma[1, n]]; s1=ba[EulerPhi[n]]; If[Equal[s, s1], k=k+1; Print[n]], {n, 1, 10000}]
  • PARI
    is(n)=factor(eulerphi(n=factor(n)))[,1]==factor(sigma(n))[,1] \\ Charles R Greathouse IV, Nov 27 2013

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Farideh Firoozbakht
Previous Showing 11-20 of 41 results. Next