A138880
Sum of all parts of all partitions of n that do not contain 1 as a part.
Original entry on oeis.org
0, 2, 3, 8, 10, 24, 28, 56, 72, 120, 154, 252, 312, 476, 615, 880, 1122, 1584, 1995, 2740, 3465, 4620, 5819, 7680, 9575, 12428, 15498, 19824, 24563, 31170, 38378, 48224, 59202, 73678, 90055, 111384, 135420, 166364, 201630, 246120, 297045, 360822
Offset: 1
Cf.
A000041,
A002865,
A066186,
A133041,
A138135,
A138136,
A138137,
A138138,
A138151,
A138879,
A139100.
-
Table[Total[Flatten[Select[IntegerPartitions[n],FreeQ[#,1]&]]],{n,50}] (* Harvey P. Dale, May 24 2015 *)
a[n_] := (PartitionsP[n] - PartitionsP[n-1])*n; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 07 2015 *)
A213191
Total sum A(n,k) of k-th powers of parts in all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 6, 9, 12, 0, 1, 10, 17, 20, 20, 0, 1, 18, 39, 44, 35, 35, 0, 1, 34, 101, 122, 87, 66, 54, 0, 1, 66, 279, 392, 287, 180, 105, 86, 0, 1, 130, 797, 1370, 1119, 660, 311, 176, 128, 0, 1, 258, 2319, 5024, 4775, 2904, 1281, 558, 270, 192
Offset: 0
Square array A(n,k) begins:
: 0, 0, 0, 0, 0, 0, 0, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 3, 4, 6, 10, 18, 34, 66, ...
: 6, 9, 17, 39, 101, 279, 797, ...
: 12, 20, 44, 122, 392, 1370, 5024, ...
: 20, 35, 87, 287, 1119, 4775, 21447, ...
: 35, 66, 180, 660, 2904, 14196, 73920, ...
Columns k=0-10 give:
A006128,
A066186,
A066183,
A229325,
A229326,
A229327,
A229328,
A229329,
A229330,
A229331,
A229332.
Rows n=0-10 give:
A000004,
A000012,
A052548,
A229354,
A229355,
A229356,
A229357,
A229358,
A229359,
A229360,
A229361.
-
b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))
(b(n-p*m, p-1, k)), m=0..n/p)))
end:
A:= (n, k)-> b(n, n, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 0, l, l + {0, First[l]*p^k*m}]][b[n - p*m, p - 1, k]], { m, 0, n/p}]]] ; a[n_, k_] := b[n, n, k][[2]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
(* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; A[n_, k_] := Sum[T[n, j]*j^k, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2016 *)
A343341
Number of integer partitions of n with no part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0
The a(5) = 1 through a(10) = 16 partitions:
(32) (321) (43) (53) (54) (64)
(52) (332) (72) (73)
(322) (431) (432) (433)
(3211) (521) (522) (532)
(3221) (531) (541)
(32111) (3222) (721)
(3321) (3322)
(4311) (4321)
(5211) (5221)
(32211) (5311)
(321111) (32221)
(33211)
(43111)
(52111)
(322111)
(3211111)
The complement is counted by
A130689.
The Heinz numbers of these partitions are
A343337.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Cf.
A066186,
A083710,
A083711,
A097986,
A098965,
A341450,
A343342,
A343345,
A343346,
A343381,
A343382.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A225610
Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.
Original entry on oeis.org
1, 4, 10, 18, 33, 52, 87, 130, 202, 295, 436, 617, 887, 1226, 1709, 2327, 3173, 4244, 5691, 7505, 9907, 12917, 16822, 21690, 27947, 35685, 45506, 57625, 72836, 91500, 114760, 143143, 178235, 220908, 273268, 336670, 414041, 507298, 620455, 756398, 920470
Offset: 0
For n = 7 the total number of parts in all partitions of 7 plus the sum of largest parts in all partitions of 7 plus the number of partitions of 7 plus 7 is equal to A006128(7) + A006128(7) + A000041(7) + 7 = 54 + 54 + 15 + 7 = 130. On the other hand the number of toothpicks in the diagram of regions of the set of partitions of 7 is equal to 130, so a(7) = 130.
. Diagram of regions
Partitions of 7 and partitions of 7
. _ _ _ _ _ _ _
7 15 |_ _ _ _ |
4 + 3 |_ _ _ _|_ |
5 + 2 |_ _ _ | |
3 + 2 + 2 |_ _ _|_ _|_ |
6 + 1 11 |_ _ _ | |
3 + 3 + 1 |_ _ _|_ | |
4 + 2 + 1 |_ _ | | |
2 + 2 + 2 + 1 |_ _|_ _|_ | |
5 + 1 + 1 7 |_ _ _ | | |
3 + 2 + 1 + 1 |_ _ _|_ | | |
4 + 1 + 1 + 1 5 |_ _ | | | |
2 + 2 + 1 + 1 + 1 |_ _|_ | | | |
3 + 1 + 1 + 1 + 1 3 |_ _ | | | | |
2 + 1 + 1 + 1 + 1 + 1 2 |_ | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1 1 |_|_|_|_|_|_|_|
.
. 1 2 3 4 5 6 7
.
Illustration of initial terms as the number of toothpicks in a diagram of regions of the set of partitions of n, for n = 1..6:
. _ _ _ _ _ _
. |_ _ _ |
. |_ _ _|_ |
. |_ _ | |
. _ _ _ _ _ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |
. _ _ _ _ |_ _ _|_ | |_ _ _|_ | |
. |_ _ | |_ _ | | |_ _ | | |
. _ _ _ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ _ |_ _ | |_ _ | | |_ _ | | | |_ _ | | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
.|_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4 10 18 33 52 87
Cf.
A000041,
A000094,
A006128,
A066186,
A093694,
A133041,
A135010,
A138137,
A139250,
A139582,
A141285,
A182377,
A186114,
A186412,
A187219,
A194446,
A194447,
A206437,
A207779,
A211978,
A220517,
A225596,
A225600.
A339106
Triangle read by rows: T(n,k) = A000203(n-k+1)*A000041(k-1), n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 3, 1, 4, 3, 2, 7, 4, 6, 3, 6, 7, 8, 9, 5, 12, 6, 14, 12, 15, 7, 8, 12, 12, 21, 20, 21, 11, 15, 8, 24, 18, 35, 28, 33, 15, 13, 15, 16, 36, 30, 49, 44, 45, 22, 18, 13, 30, 24, 60, 42, 77, 60, 66, 30, 12, 18, 26, 45, 40, 84, 66, 105, 88, 90, 42, 28, 12, 36, 39, 75, 56, 132, 90, 154, 120, 126, 56
Offset: 1
Triangle begins:
1;
3, 1;
4, 3, 2;
7, 4, 6, 3;
6, 7, 8, 9, 5;
12, 6, 14, 12, 15, 7;
8, 12, 12, 21, 20, 21, 11;
15, 8, 24, 18, 35, 28, 33, 15;
13, 15, 16, 36, 30, 49, 44, 45, 22;
18, 13, 30, 24, 60, 42, 77, 60, 66, 30;
12, 18, 26, 45, 40, 84, 66, 105, 88, 90, 42;
28, 12, 36, 39, 75, 56, 132, 90, 154, 120, 126, 56;
...
For n = 6 the calculation of every term of row 6 is as follows:
-------------------------
k A000041 T(6,k)
1 1 * 12 = 12
2 1 * 6 = 6
3 2 * 7 = 14
4 3 * 4 = 12
5 5 * 3 = 15
6 7 * 1 = 7
. A000203
-------------------------
The sum of row 6 is 12 + 6 + 14 + 12 + 15 + 7 = 66, equaling A066186(6).
Row sums give
A066186 (conjectured).
-
T[n_, k_] := DivisorSigma[1, n - k + 1] * PartitionsP[k - 1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jan 08 2021 *)
-
T(n, k) = sigma(n-k+1)*numbpart(k-1); \\ Michel Marcus, Jan 08 2021
A207383
Triangle read by rows: T(n,k) is the sum of parts of size k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 0, 3, 3, 4, 0, 4, 5, 2, 3, 0, 5, 7, 8, 6, 4, 0, 6, 11, 6, 6, 4, 5, 0, 7, 15, 16, 9, 12, 5, 6, 0, 8, 22, 14, 18, 8, 10, 6, 7, 0, 9, 30, 30, 18, 20, 15, 12, 7, 8, 0, 10, 42, 30, 30, 20, 20, 12, 14, 8, 9, 0, 11, 56, 54, 42, 40, 25, 30, 14, 16, 9, 10, 0, 12
Offset: 1
Triangle begins:
1;
1, 2;
2, 0, 3;
3, 4, 0, 4;
5, 2, 3, 0, 5;
7, 8, 6, 4, 0, 6;
11, 6, 6, 4, 5, 0, 7;
15, 16, 9, 12, 5, 6, 0, 8;
22, 14, 18, 8, 10, 6, 7, 0, 9;
30, 30, 18, 20, 15, 12, 7, 8, 0, 10;
42, 30, 30, 20, 20, 12, 14, 8, 9, 0, 11;
56, 54, 42, 40, 25, 30, 14, 16, 9, 10, 0, 12;
...
From _Omar E. Pol_, Nov 28 2020: (Start)
Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7:
. _ _ _ _ _ _ _
. (7) (7) |_ _ _ _ |
. (4+3) (4+3) |_ _ _ _|_ |
. (5+2) (5+2) |_ _ _ | |
. (3+2+2) (3+2+2) |_ _ _|_ _|_ |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) |_|
. ----------------
. 19,8,5,3,2,1,1 --> Row 7 of triangle A207031
. |/|/|/|/|/|/|
. 11,3,2,1,1,0,1 --> Row 7 of triangle A182703
. * * * * * * *
. 1,2,3,4,5,6,7 --> Row 7 of triangle A002260
. = = = = = = =
. 11,6,6,4,5,0,7 --> Row 7 of this triangle
.
Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So the 7th row of triangle is [11, 6, 6, 4, 5, 0, 7]. (End)
A337209
Triangle read by rows T(n,k), (n >= 1, k > = 1), in which row n has length A000070(n-1) and every column gives A000203, the sum of divisors function.
Original entry on oeis.org
1, 3, 1, 4, 3, 1, 1, 7, 4, 3, 3, 1, 1, 1, 6, 7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1, 12, 6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 8, 12, 12, 6, 6, 6, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4
Offset: 1
Triangle begins:
1;
3, 1;
4, 3, 1, 1;
7, 4, 3, 3, 1, 1, 1;
6, 7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1;
12, 6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, ...
...
Sum of divisors of terms of
A176206.
-
A337209row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[1,n-m],PartitionsP[m]],{m,0,n-1}]];Array[A337209row,10] (* Paolo Xausa, Sep 02 2023 *)
-
f(n) = sum(k=0, n-1, numbpart(k));
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (sigma(n))); my(s=0); while (k <= f(n-1), s++; n--;); sigma(1+s);}
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); );} \\ Michel Marcus, Jan 13 2021
A007870
Determinant of character table of symmetric group S_n.
Original entry on oeis.org
1, 1, 2, 6, 96, 2880, 9953280, 100329062400, 10651768002183168000, 150283391703941024789299200000, 9263795272057860957392207640004657152000000000, 16027108137650009941734148595388542471170145479274004480000000000000
Offset: 0
1 + x + 2*x^2 + 6*x^3 + 96*x^4 + 2880*x^5 + 9953280*x^6 + 100329062400*x^7 + ...
The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)} with product 4*3*1*2*2*2*1*1*1*1*1*1 = 96. - _Gus Wiseman_, May 09 2019
- Alois P. Heinz, Table of n, a(n) for n = 0..18
- Amritanshu Prasad, Symmetric Functions, Chapter 5, Representation Theory: a Combinatorial Viewpoint, Cambridge Studies in Adv. Math. 147 (2014), p. 107.
- F. W. Schmidt and R. Simion, On a partition identity, J. Combin. Theory, A 36 (1984), 249-252.
- D. Vaintrob, A product identity for partitions, MathOverflow, June 2012.
Cf.
A000041,
A000142,
A006128,
A006906,
A066186,
A066633,
A086644,
A325501,
A325504,
A325507,
A325536.
-
List(List([0..11],n->Flat(Partitions(n))),Product); # Muniru A Asiru, Dec 21 2018
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1$2], ((f, g)->
[f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..12); # Alois P. Heinz, Jul 30 2013
-
Needs["Combinatorica`"]; Table[Times@@Flatten[Partitions[n]], {n, 10}]
a[ n_] := If[n < 0, 0, Times @@ Flatten @ IntegerPartitions @ n] (* Michael Somos, Jun 11 2012 *)
Table[Exp[Total[Map[Log, IntegerPartitions [n]], 2]], {n, 1, 25}] (* Richard R. Forberg, Dec 08 2014 *)
b[n_, i_] := b[n, i] = If[n == 0, {1, 1}, Function[{f, g}, {f[[1]] + g[[1]], f[[2]]*g[[2]]*i^g[[1]]}][If[i < 2, {0, 1}, b[n, i - 1]], If[i > n, {0, 1}, b[n - i, i]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
-
from sympy import prod
from sympy.utilities.iterables import ordered_partitions
a = lambda n: prod(map(prod, ordered_partitions(n))) if n > 0 else 1
print([a(n) for n in range(0, 12)]) # Darío Clavijo, Feb 22 2024
A302246
Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nonincreasing order.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1
Offset: 1
Triangle begins:
1;
2,1,1;
3,2,1,1,1,1;
4,3,2,2,2,1,1,1,1,1,1,1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1;
6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There is only one 4, only one 3, three 2's and seven 1's, so the 4th row of this triangle is [4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nonincreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
-
nrows=10;Array[ReverseSort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
-
row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list), , 4); \\ Michel Marcus, Jun 16 2022
A302247
Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nondecreasing order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
1,1,2;
1,1,1,1,2,3;
1,1,1,1,1,1,1,2,2,2,3,4;
1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There are seven 1's, three 2's, only one 3 and only one 4, so the 4th row of this triangle is [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nondecreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
-
nrows=10; Array[Sort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
-
row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list)); \\ Michel Marcus, Jun 16 2022
Comments