cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A123321 Products of 7 distinct primes (squarefree 7-almost primes).

Original entry on oeis.org

510510, 570570, 690690, 746130, 870870, 881790, 903210, 930930, 1009470, 1067430, 1111110, 1138830, 1193010, 1217370, 1231230, 1272810, 1291290, 1345890, 1360590, 1385670, 1411410, 1438710, 1452990, 1504230, 1540770
Offset: 1

Views

Author

Rick L. Shepherd, Sep 25 2006

Keywords

Comments

Intersection of A005117 and A046308.
Intersection of A005117 and A176655. - R. J. Mathar, Dec 05 2016

Examples

			a(1) = 510510 = 2*3*5*7*11*13*17 = A002110(7).
		

Crossrefs

Cf. A005117, A046308, A048692, Squarefree k-almost primes: A000040 (k=1), A006881 (k=2), A007304 (k=3), A046386 (k=4), A046387 (k=5), A067885 (k=6), A123322 (k=8), A115343 (k=9).

Programs

  • Mathematica
    f7Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f7Q[n], AppendTo[lst, n]], {n, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
    Select[Range[1600000],PrimeNu[#]==7&&SquareFreeQ[#]&] (* Harvey P. Dale, Sep 19 2013 *)
  • PARI
    is(n)=omega(n)==7 && bigomega(n)==7 \\ Hugo Pfoertner, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A123321(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,7)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Aug 26 2008

A115343 Products of 9 distinct primes.

Original entry on oeis.org

223092870, 281291010, 300690390, 340510170, 358888530, 363993630, 380570190, 397687290, 406816410, 417086670, 434444010, 455885430, 458948490, 481410930, 485555070, 497668710, 504894390, 512942430, 514083570, 531990690, 538047510, 547777230, 551861310
Offset: 1

Views

Author

Jonathan Vos Post, Mar 06 2006

Keywords

Examples

			514083570 is in the sequence as it is equal to 2*3*5*7*11*13*17*19*53.
		

Crossrefs

Programs

  • Maple
    N:= 10^9: # to get all terms < N
    n0:= mul(ithprime(i),i=1..8):
    Primes:= select(isprime,[$1..floor(N/n0)]):
    nPrimes:= nops(Primes):
    for i from 1 to 9 do
      for j from 1 to nPrimes do
        M[i,j]:= convert(Primes[1..min(j,i)],`*`);
    od od:
    A:= {}:
    for i9 from 9 to nPrimes do
      m9:= Primes[i9];
    for i8 in select(t -> M[7,t-1]*Primes[t]*m9 <= N, [$8..i9-1]) do
      m8:= m9*Primes[i8];
    for i7 in select(t -> M[6,t-1]*Primes[t]*m8 <= N, [$7..i8-1]) do
      m7:= m8*Primes[i7];
    for i6 in select(t -> M[5,t-1]*Primes[t]*m7 <= N, [$6..i7-1]) do
      m6:= m7*Primes[i6];
    for i5 in select(t -> M[4,t-1]*Primes[t]*m6 <= N, [$5..i6-1]) do
      m5:= m6*Primes[i5];
    for i4 in select(t -> M[3,t-1]*Primes[t]*m5 <= N, [$4..i5-1]) do
      m4:= m5*Primes[i4];
    for i3 in select(t -> M[2,t-1]*Primes[t]*m4 <= N, [$3..i4-1]) do
      m3:= m4*Primes[i3];
    for i2 in select(t -> M[1,t-1]*Primes[t]*m3 <= N, [$2..i3-1]) do
      m2:= m3*Primes[i2];
    for i1 in select(t -> Primes[t]*m2 <= N, [$1..i2-1]) do
      A:= A union {m2*Primes[i1]};
    od od od od od od od od od:
    A; # Robert Israel, Sep 02 2014
  • Mathematica
    Module[{n=6*10^8,k},k=PrimePi[n/Times@@Prime[Range[8]]];Select[ Union[ Times@@@ Subsets[Prime[Range[k]],{9}]],#<=n&]](* Harvey P. Dale with suggestions from Jean-François Alcover, Sep 03 2014 *)
    n = 10^9; n0 = Times @@ Prime[Range[8]]; primes = Select[Range[Floor[n/n0]], PrimeQ]; nPrimes = Length[primes]; Do[M[i, j] = Times @@ primes[[1 ;; Min[j, i]]], {i, 1, 9}, {j, 1, nPrimes}]; A = {};
    Do[m9 = primes[[i9]];
    Do[m8 = m9*primes[[i8]];
    Do[m7 = m8*primes[[i7]];
    Do[m6 = m7*primes[[i6]];
    Do[m5 = m6*primes[[i5]];
    Do[m4 = m5*primes[[i4]];
    Do[m3 = m4*primes[[i3]];
    Do[m2 = m3*primes[[i2]];
    Do[A = A ~Union~ {m2*primes[[i1]]},
    {i1, Select[Range[1, i2-1], primes[[#]]*m2 <= n &]}],
    {i2, Select[Range[2, i3-1], M[1, #-1]*primes[[#]]*m3 <= n &]}],
    {i3, Select[Range[3, i4-1], M[2, #-1]*primes[[#]]*m4 <= n &]}],
    {i4, Select[Range[4, i5-1], M[3, #-1]*primes[[#]]*m5 <= n &]}],
    {i5, Select[Range[5, i6-1], M[4, #-1]*primes[[#]]*m6 <= n &]}],
    {i6, Select[Range[6, i7-1], M[5, #-1]*primes[[#]]*m7 <= n &]}],
    {i7, Select[Range[7, i8-1], M[6, #-1]*primes[[#]]*m8 <= n &]}],
    {i8, Select[Range[8, i9-1], M[7, #-1]*primes[[#]]*m9 <= n &]}],
    {i9, 9, nPrimes}];
    A (* Jean-François Alcover, Sep 03 2014, translated and adapted from Robert Israel's Maple program *)
  • PARI
    is(n)=omega(n)==9 && bigomega(n)==9 \\ Hugo Pfoertner, Dec 18 2018
  • Python
    from operator import mul
    from functools import reduce
    from sympy import nextprime, sieve
    from itertools import combinations
    n = 190
    m = 9699690*nextprime(n-1)
    A115343 = []
    for x in combinations(sieve.primerange(1,n),9):
        y = reduce(mul,(d for d in x))
        if y < m:
            A115343.append(y)
    A115343 = sorted(A115343) # Chai Wah Wu, Sep 02 2014
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A115343(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,9)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024
    

Extensions

Corrected and extended by Don Reble, Mar 09 2006
More terms and corrected b-file from Chai Wah Wu, Sep 02 2014

A176655 Numbers that are divisible by exactly 7 distinct primes.

Original entry on oeis.org

510510, 570570, 690690, 746130, 870870, 881790, 903210, 930930, 1009470, 1021020, 1067430, 1111110, 1138830, 1141140, 1193010, 1217370, 1231230, 1272810, 1291290, 1345890, 1360590, 1381380, 1385670, 1411410, 1438710
Offset: 1

Views

Author

Keywords

Examples

			1711710 = 2 * 3^2 * 5 * 7 * 11 * 13 * 19.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[9!,5*9! ],Length[FactorInteger[ # ]]==7&]
    Select[Range[144*10^4],PrimeNu[#]==7&] (* Harvey P. Dale, Jul 05 2022 *)
  • PARI
    isA176655(n)=omega(n)==7 \\ Charles R Greathouse IV, Mar 11 2011
    
  • PARI
    (PARI) A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v)
    list(lim,pr=7)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023

A123322 Products of 8 distinct primes (squarefree 8-almost primes).

Original entry on oeis.org

9699690, 11741730, 13123110, 14804790, 15825810, 16546530, 17160990, 17687670, 18888870, 20030010, 20281170, 20930910, 21111090, 21411390, 21637770, 21951930, 23130030, 23393370, 23993970, 24534510, 25555530, 25571910
Offset: 1

Views

Author

Rick L. Shepherd, Sep 25 2006

Keywords

Comments

Intersection of A005117 and A046310.

Examples

			a(1) = 9699690 = 2*3*5*7*11*13*17*19 = A002110(8).
		

Crossrefs

Cf. A001221, A001222, A005117, A046310, A048692, Squarefree k-almost primes: A000040 (k=1), A006881 (k=2), A007304 (k=3), A046386 (k=4), A046387 (k=5), A067885 (k=6), A123321 (k=7), A115343 (k=9).

Programs

  • Maple
    N:= 3*10^7: # to get all terms  <= N
    pmax:= floor(N/mul(ithprime(i),i=1..7)):
    Primes:= select(isprime,[2,seq(i,i=3..pmax,2)]):
    sort(select(`<`,map(convert,combinat:-choose(Primes,8),`*`),N)); # Robert Israel, Dec 18 2018
  • Mathematica
    f8Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f8Q[n], AppendTo[lst, n]], {n, 10!, 11!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
    Take[ Sort[ Times @@@ Subsets[ Prime@ Range@ 15, {8}]], 22] (* Robert G. Wilson v, Dec 18 2018 *)
  • PARI
    is(n)=issquarefree(n)&&omega(n)==8 \\ Charles R Greathouse IV, Feb 01 2017, corrected (following an observation from Zak Seidov) by M. F. Hasler, Dec 19 2018
    
  • PARI
    is(n) = my(f = factor(n)); omega(f) == 8 && bigomega(f) == 8 \\ David A. Corneth, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A123322(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,8)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Extensions

Edited by Robert Israel, Dec 18 2018

A340316 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where row n is the increasing list of all squarefree numbers with n primes.

Original entry on oeis.org

2, 3, 6, 5, 10, 30, 7, 14, 42, 210, 11, 15, 66, 330, 2310, 13, 21, 70, 390, 2730, 30030, 17, 22, 78, 462, 3570, 39270, 510510, 19, 26, 102, 510, 3990, 43890, 570570, 9699690, 23, 33, 105, 546, 4290, 46410, 690690, 11741730, 223092870
Offset: 1

Views

Author

Peter Dolland, Jan 04 2021

Keywords

Comments

This is a permutation of all squarefree numbers > 1.

Examples

			First six rows and columns:
      2     3     5     7    11    13
      6    10    14    15    21    22
     30    42    66    70    78   102
    210   330   390   462   510   546
   2310  2730  3570  3990  4290  4830
  30030 39270 43890 46410 51870 53130
		

Crossrefs

Cf. A005117 (squarefree numbers), A072047 (number of prime factors), A340313 (indexing), A078840 (all natural numbers, not only squarefree).
Columns k=1..2: A002110, A306237.
Main diagonal gives A340467.
Cf. A358677.

Programs

  • Haskell
    a340316 n k = a340316_row n !! (k-1)
    a340316_row n = [a005117_list !! k | k <- [0..], a072047_list !! k == n]
    
  • Python
    from math import prod, isqrt
    from sympy import prime, primerange, integer_nthroot, primepi
    def A340316_T(n,k):
        if n == 1: return prime(k)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(k+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

A(A072047(n), A340313(n)) = A005117(n) for n > 1.

A147573 Numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13}.

Original entry on oeis.org

30030, 60060, 90090, 120120, 150150, 180180, 210210, 240240, 270270, 300300, 330330, 360360, 390390, 420420, 450450, 480480, 540540, 600600, 630630, 660660, 720720, 750750, 780780, 810810, 840840, 900900, 960960, 990990, 1051050, 1081080, 1171170, 1201200, 1261260
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575
Although 39270 has exactly 6 distinct prime divisors (39270=2*3*5*7*11*17), it is not in this sequence because the 6 distinct prime divisors may only comprise 2, 3, 5, 7, 11, and 13. - Harvey P. Dale, Oct 11 2014

Crossrefs

Subsequence of A067885 and of A080197.

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 192/1001, AppendTo[a, x]], {x, 1, 100000}]; a
  • PARI
    is(n)=if(n%30030, return(0)); my(g=30030); while(g>1, n/=g; g=gcd(n,30030)); n==1 \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = 30030 * A080197(n). - Charles R Greathouse IV, Sep 14 2015
Sum_{n>=1} 1/a(n) = 1/5760. - Amiram Eldar, Nov 12 2020

Extensions

More terms from Amiram Eldar, Mar 10 2020

A046396 Palindromes which are the product of 6 distinct primes.

Original entry on oeis.org

222222, 282282, 474474, 555555, 606606, 646646, 969969, 2040402, 2065602, 2206022, 2417142, 2646462, 2673762, 2875782, 3262623, 3309033, 4179714, 4192914, 4356534, 4585854, 4912194, 5021205, 5169615, 5174715, 5578755
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

The original definition "Palindromes with exactly 6 distinct prime factors" was misleading. For example, the number 414414 = 2 * 3^2 * 7 * 11 * 13 * 23 has exactly 6 distinct prime factors, although the factor 3 occurs twice. But the listed terms show that it is not in this sequence. See sequence A373466 for the variant corresponding to that definition. - M. F. Hasler, Jun 06 2024

Crossrefs

Cf. A046332 (similar, but for 6 prime factors counted with multiplicity).
Cf. A002113 (palindromes), A067885 (products of 6 distinct primes).
Cf. A074969 (numbers having 6 distinct prime divisors).

Programs

  • Mathematica
    Select[Range[6*10^6],#==IntegerReverse[#]&&PrimeNu[#]==PrimeOmega[#]==6&] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Mar 17 2016 *)
  • PARI
    A046332_upto(N, start=1, num_fact=6)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && issquarefree(start) && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024

Formula

Intersection of A002113 and A067885. - M. F. Hasler, Jun 06 2024

Extensions

Name edited

A279686 Numbers that are the least integer of a prime tower factorization equivalence class (see Comments for details).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 36, 40, 48, 60, 64, 72, 81, 90, 108, 144, 162, 180, 192, 200, 210, 225, 240, 256, 280, 320, 324, 360, 405, 420, 432, 450, 500, 512, 540, 576, 600, 630, 648, 720, 768, 810, 900, 960, 1260, 1280, 1296, 1350, 1400, 1536, 1575, 1600
Offset: 1

Views

Author

Rémy Sigrist, Dec 16 2016

Keywords

Comments

The prime tower factorization of a number is defined in A182318.
We say that two numbers, say n and m, belong to the same prime tower factorization equivalence class iff there is a permutation of the prime numbers, say f, such that replacing each prime p by f(p) in the prime tower factorization of n leads to m.
The notion of prime tower factorization equivalence class can be seen as a generalization of the notion of prime signature; thereby, this sequence can be seen as an equivalent of A025487.
This sequence contains all primorial numbers (A002110).
This sequence contains A260548.
This sequence contains the terms > 0 in A014221.
If n appears in the sequence, then 2^n appears in the sequence.
If n appears in the sequence and k>=0, then A002110(k)^n appears in the sequence.
With the exception of term 1, this sequence contains no term from A182318.
Odd numbers appearing in this sequence: 1, 81, 225, 405, 1575, 2025, 2835, 6125, 10125, 11025, 14175, 15625, 16875, 17325, 31185, 33075, 50625, 67375, 70875, 99225, ...
Here are some prime tower factorization equivalence classes:
- Class 1: the number one (the only finite equivalence class),
- Class p: the prime numbers (A000040),
- Class p*q: the squarefree semiprimes (A006881),
- Class p^p: the numbers of the form p^p with p prime (A051674),
- Class p^q: the numbers of the form p^q with p and q distinct primes,
- Class p*q*r: the sphenic numbers (A007304),
- Class p*q*r*s: the products of four distinct primes (A046386),
- Class p*q*r*s*t: the products of five distinct primes (A046387),
- Class p*q*r*s*t*u: the products of six distinct primes (A067885).

Examples

			2 is the least number of the form p with p prime, hence 2 appears in the sequence.
6 is the least number of the form p*q with p and q distinct primes, hence 6 appears in the sequence.
72 is the least number of the form p^q*q^p with p and q distinct primes, hence 72 appears in the sequence.
36000 is the least number of the form p^q*q^r*r^p with p, q and r distinct primes, hence 36000 appears in the sequence.
		

Crossrefs

A294776 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 6.

Original entry on oeis.org

1616615, 3411705, 7436429, 9408035, 10163195, 12838371, 13037385, 13844919, 14969435, 19605131, 20414121, 23783045, 24997749, 25113935, 27568145, 30478565, 31473255, 32518535, 33999455, 39946569, 43134015, 46115135, 48215255, 50907855, 56179409, 61558343
Offset: 1

Views

Author

Paolo P. Lava, Nov 09 2017

Keywords

Crossrefs

Subsequence of A067885.
Cf. A006881 (k=2), A262723 (k=3), A294751 (k=4), A294752 (k=5).

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n,ok;
    for n from 2*3*5*7*11*13 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2];
    if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1;
    for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,6);
    # Alternative:
    N:= 10^8: # to get all terms <= N
    M:= floor(fsolve(3*5*7*(M-7)*(M-5)*(M-3) = N)):
    P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P):
    Res:= NULL:
    for m from 10 by 2 to M do
      for ix from 1 to nP-2 do
        x:= P[ix];
        if x >= m/2 or (x*(m-x))^3 >= N then break fi;
        if not isprime(m-x) then next fi;
        for iy from ix+1 to nP-1 do
          y:= P[iy];
          if y >= m/2 or x*(m-x)*(y*(m-y))^2 >= N then break fi;
          if not isprime(m-y) then next fi;
          for iz from iy+1 to nP do
            z:= P[iz];
            if z >= m/2 then break fi;
            v:= x*(m-x)*y*(m-y)*z*(m-z);
            if v > N then break fi;
            if isprime(m-z) then Res:= Res, v fi;
    od od od od:
    sort([Res]); # Robert Israel, May 19 2019
  • PARI
    isok(n, nb=6) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ Michel Marcus, Nov 10 2017

Extensions

More terms from Giovanni Resta, Nov 09 2017

A168352 Products of 6 distinct odd primes.

Original entry on oeis.org

255255, 285285, 345345, 373065, 435435, 440895, 451605, 465465, 504735, 533715, 555555, 569415, 596505, 608685, 615615, 636405, 645645, 672945, 680295, 692835, 705705, 719355, 726495, 752115, 770385, 780045, 795795, 803985, 805035, 811965, 823515, 838695, 844305, 858585
Offset: 1

Views

Author

Keywords

Examples

			255255 = 3*5*7*11*13*17
285285 = 3*5*7*11*13*19
345345 = 3*5*7*11*13*23
435435 = 3*5*7*11*13*29
		

Crossrefs

Cf. A046391 (5 distinct odd primes).

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6*9!}];lst
  • PARI
    is(n) = {n%2 == 1 && factor(n)[,2]~ == [1,1,1,1,1,1]} \\ David A. Corneth, Aug 26 2020
    
  • Python
    from sympy import primefactors, factorint
    print([n for n in range(1, 1000000, 2) if len(primefactors(n)) == 6 and max(list(factorint(n).values())) == 1]) # Karl-Heinz Hofmann, Mar 01 2023
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A168352(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,6)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

A067885 INTERSECT A005408. [R. J. Mathar, Nov 24 2009]

Extensions

Definition corrected by R. J. Mathar, Nov 24 2009
More terms from David A. Corneth, Aug 26 2020
Previous Showing 11-20 of 35 results. Next