cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 110 results. Next

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A060130 Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Examples

			19 = 3*(3!) + 0*(2!) + 1*(1!), thus it is written as "301" in factorial base (A007623). The count of nonzero digits in that representation is 2, so a(19) = 2.
		

Crossrefs

Cf. A227130 (positions of even terms), A227132 (of odd terms).
The topmost row and the leftmost column in array A230415, the left edge of triangle A230417.
Differs from similar A267263 for the first time at n=30.

Programs

  • Maple
    A060130(n) = count_nonfixed(convert(PermUnrank3R(n), 'disjcyc'))-nops(convert(PermUnrank3R(n), 'disjcyc')) or nops(fac_base(n))-nops(positions(0, fac_base(n)))
    fac_base := n -> fac_base_aux(n, 2); fac_base_aux := proc(n, i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i), i+1)), (n mod i)]); fi; end;
    count_nonfixed := l -> convert(map(nops, l), `+`);
    positions := proc(e, ll) local a, k, l, m; l := ll; m := 1; a := []; while(member(e, l[m..nops(l)], 'k')) do a := [op(a), (k+m-1)]; m := k+m; od; RETURN(a); end;
    # For procedure PermUnrank3R see A060117
  • Mathematica
    Block[{nn = 105, r}, r = MixedRadix[Reverse@ Range[2, -1 + SelectFirst[Range@ 12, #! > nn &]]]; Array[Count[IntegerDigits[#, r], k_ /; k > 0] &, nn, 0]] (* Michael De Vlieger, Dec 30 2017 *)
  • Scheme
    (define (A060130 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (if (zero? (remainder n i)) 0 1)))))))
    ;; Two other implementations, that use memoization-macro definec:
    (definec (A060130 n) (if (zero? n) n (+ 1 (A060130 (A257687 n)))))
    (definec (A060130 n) (if (zero? n) n (+ (A257511 n) (A060130 (A257684 n)))))
    ;; Antti Karttunen, Dec 30 2017

Formula

a(0) = 0; for n > 0, a(n) = 1 + a(A257687(n)).
a(0) = 0; for n > 0, a(n) = A257511(n) + a(A257684(n)).
a(n) = A060129(n) - A060128(n).
a(n) = A084558(n) - A257510(n).
a(n) = A275946(n) + A275962(n).
a(n) = A275948(n) + A275964(n).
a(n) = A055091(A060119(n)).
a(n) = A069010(A277012(n)) = A000120(A275727(n)).
a(n) = A001221(A275733(n)) = A001222(A275733(n)).
a(n) = A001222(A275734(n)) = A001222(A275735(n)) = A001221(A276076(n)).
a(n) = A046660(A275725(n)).
a(A225901(n)) = a(n).
A257511(n) <= a(n) <= A034968(n).
A275806(n) <= a(n).
a(A275804(n)) = A060502(A275804(n)). [A275804 gives all the positions where this coincides with A060502.]
a(A276091(n)) = A260736(A276091(n)). [A276091 gives all the positions where this coincides with A260736.]

Extensions

Example-section added, name edited, the old Maple-code moved away from the formula-section, and replaced with all the new formulas by Antti Karttunen, Dec 30 2017

A328592 Numbers whose binary expansion has all different lengths of runs of 1's.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 35, 38, 39, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 67, 70, 71, 76, 78, 79, 88, 92, 94, 95, 96, 97, 98, 100, 103, 104, 110, 111, 112, 113, 114
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2019

Keywords

Comments

Also numbers whose binary indices have different lengths of runs of successive parts. A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
The complement is {5, 9, 10, 17, 18, 20, 21, 27, ...}.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   0:     0 ~ {}
   1:     1 ~ {1}
   2:    10 ~ {2}
   3:    11 ~ {1,2}
   4:   100 ~ {3}
   6:   110 ~ {2,3}
   7:   111 ~ {1,2,3}
   8:  1000 ~ {4}
  11:  1011 ~ {1,2,4}
  12:  1100 ~ {3,4}
  13:  1101 ~ {1,3,4}
  14:  1110 ~ {2,3,4}
  15:  1111 ~ {1,2,3,4}
  16: 10000 ~ {5}
  19: 10011 ~ {1,2,5}
  22: 10110 ~ {2,3,5}
  23: 10111 ~ {1,2,3,5}
  24: 11000 ~ {4,5}
  25: 11001 ~ {1,4,5}
  26: 11010 ~ {2,4,5}
		

Crossrefs

The version for prime indices is A130091.
The binary expansion of n has A069010(n) runs of 1's.
The lengths of runs of 1's in the binary expansion of n are row n of A245563.
Numbers whose binary expansion has equal lengths of runs of 1's are A164707.

Programs

  • Mathematica
    Select[Range[0,100],UnsameQ@@Length/@Split[Join@@Position[Reverse[IntegerDigits[#,2]],1],#2==#1+1&]&]

A052331 Inverse of A052330; A binary encoding of Fermi-Dirac factorization of n, shown in decimal.

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 16, 5, 32, 9, 64, 6, 128, 17, 10, 256, 512, 33, 1024, 12, 18, 65, 2048, 7, 4096, 129, 34, 20, 8192, 11, 16384, 257, 66, 513, 24, 36, 32768, 1025, 130, 13, 65536, 19, 131072, 68, 40, 2049, 262144, 258, 524288, 4097, 514, 132, 1048576, 35
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

Every number can be represented uniquely as a product of numbers of the form p^(2^k), sequence A050376. This sequence is a binary representation of this factorization, with a(p^(2^k)) = 2^(i-1), where i is the index (A302778) of p^(2^k) in A050376. Additive with a(p^e) = sum a(p^(2^e_k)) where e = sum(2^e_k) is the binary representation of e and a(p^(2^k)) is as described above. - Franklin T. Adams-Watters, Oct 25 2005 - Index offset corrected by Antti Karttunen, Apr 17 2018

Examples

			n = 84 has Fermi-Dirac factorization A050376(5) * A050376(3) * A050376(2) = 7*4*3. Thus a(84) = 2^(5-1) + 2^(3-1) + 2^(2-1) = 16 + 4 + 2 = 22 ("10110" in binary = A182979(84)). - _Antti Karttunen_, Apr 17 2018
		

Crossrefs

Cf. A182979 (same sequence shown in binary).
One less than A064358.
Cf. also A156552.

Programs

  • PARI
    A052331=a(n)={for(i=1,#n=factor(n)~,n[2,i]>1||next; m=binary(n[2,i]); n=concat(n,Mat(vector(#m-1,j,[n[1,i]^2^(#m-j),m[j]]~)));n[2,i]%=2); n||return(0); m=vecsort(n[1,]); forprime(p=1,m[#m],my(j=0);while(p^2^j>1} \\ M. F. Hasler, Apr 08 2015
    
  • PARI
    up_to_e = 8192;
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); }; \\ Antti Karttunen, Apr 12 2018

Formula

a(1)=0; a(n*A050376(k)) = a(n) + 2^k for a(n) < 2^k, k=0, 1, ... - Thomas Ordowski, Mar 23 2005
From Antti Karttunen, Apr 13 2018: (Start)
a(1) = 0; for n > 1, a(n) = A000079(A302785(n)-1) + a(A302776(n)).
For n > 1, a(n) = A000079(A302786(n)-1) * A302787(n).
a(n) = A064358(n)-1.
A000120(a(n)) = A064547(n).
A069010(a(n)) = A302790(n).
(End)

A014081 a(n) is the number of occurrences of '11' in the binary expansion of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 2, 2, 2, 3, 4, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 3, 3, 3, 4, 5, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 1
Offset: 0

Views

Author

Keywords

Comments

a(n) takes the value k for the first time at n = 2^(k+1)-1. Cf. A000225. - Robert G. Wilson v, Apr 02 2009
a(n) = A213629(n,3) for n > 2. - Reinhard Zumkeller, Jun 17 2012

Examples

			The binary expansion of 15 is 1111, which contains three occurrences of 11, so a(15)=3.
		

Crossrefs

First differences give A245194.
A245195 gives 2^a(n).

Programs

  • Haskell
    import Data.Bits ((.&.))
    a014081 n = a000120 (n .&. div n 2)  -- Reinhard Zumkeller, Jan 23 2012
    
  • Maple
    # To count occurrences of 11..1 (k times) in binary expansion of v:
    cn := proc(v, k) local n, s, nn, i, j, som, kk;
    som := 0;
    kk := convert(cat(seq(1, j = 1 .. k)),string);
    n := convert(v, binary);
    s := convert(n, string);
    nn := length(s);
    for i to nn - k + 1 do
    if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od;
    som; end; # This program no longer worked. Corrected by N. J. A. Sloane, Apr 06 2014.
    [seq(cn(n,2),n=0..300)];
    # Alternative:
    A014081 := proc(n) option remember;
      if n mod 4 <= 1 then procname(floor(n/4))
    elif n mod 4 = 2 then procname(n/2)
    else 1 + procname((n-1)/2)
    fi
    end proc:
    A014081(0):= 0:
    map(A014081, [$0..1000]); # Robert Israel, Sep 04 2015
  • Mathematica
    f[n_] := Count[ Partition[ IntegerDigits[n, 2], 2, 1], {1, 1}]; Table[ f@n, {n, 0, 104}] (* Robert G. Wilson v, Apr 02 2009 *)
    Table[SequenceCount[IntegerDigits[n,2],{1,1},Overlaps->True],{n,0,120}] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    A014081(n)=sum(i=0,#binary(n)-2,bitand(n>>i,3)==3)  \\ M. F. Hasler, Jun 06 2012
    
  • PARI
    a(n) = hammingweight(bitand(n, n>>1)) ;
    vector(105, i, a(i-1))  \\ Gheorghe Coserea, Aug 30 2015
    
  • Python
    def a(n): return sum([((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1)]) # Indranil Ghosh, Jun 03 2017
    
  • Python
    from re import split
    def A014081(n): return sum(len(d)-1 for d in split('0+', bin(n)[2:]) if d != '') # Chai Wah Wu, Feb 04 2022

Formula

a(4n) = a(4n+1) = a(n), a(4n+2) = a(2n+1), a(4n+3) = a(2n+1) + 1. - Ralf Stephan, Aug 21 2003
G.f.: (1/(1-x)) * Sum_{k>=0} t^3/((1+t)*(1+t^2)), where t = x^(2^k). - Ralf Stephan, Sep 10 2003
a(n) = A000120(n) - A069010(n). - Ralf Stephan, Sep 10 2003
Sum_{n>=1} A014081(n)/(n*(n+1)) = A100046 (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021

A164707 A positive integer n is included if all runs of 1's in binary n are of the same length.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 24, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 48, 51, 54, 56, 60, 62, 63, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 96, 99, 102, 108, 112, 119, 120, 124, 126, 127, 128, 129, 130, 132, 133, 136
Offset: 1

Views

Author

Leroy Quet, Aug 23 2009

Keywords

Comments

Clarification: A binary number consists of "runs" completely of 1's alternating with runs completely of 0's. No two or more runs all of the same digit are adjacent.
This sequence contains in part positive integers that each contain one run of 1's. For those members of this sequence each with at least two runs of 1's, see A164709.

Examples

			From _Gus Wiseman_, Oct 31 2019: (Start)
The sequence of terms together with their binary expansions and binary indices begins:
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   4:    100 ~ {3}
   5:    101 ~ {1,3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
   8:   1000 ~ {4}
   9:   1001 ~ {1,4}
  10:   1010 ~ {2,4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  16:  10000 ~ {5}
  17:  10001 ~ {1,5}
  18:  10010 ~ {2,5}
  20:  10100 ~ {3,5}
  21:  10101 ~ {1,3,5}
  24:  11000 ~ {4,5}
  27:  11011 ~ {1,2,4,5}
(End)
		

Crossrefs

The version for prime indices is A072774.
The binary expansion of n has A069010(n) runs of 1's.
Numbers whose runs are all of different lengths are A328592.
Partitions with equal multiplicities are A047966.
Numbers whose binary expansion is aperiodic are A328594.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose reversed binary expansion is a Lyndon word are A328596.

Programs

  • Maple
    isA164707 := proc(n) local bdg,arl,lset ; bdg := convert(n,base,2) ; lset := {} ; arl := -1 ; for p from 1 to nops(bdg) do if op(p,bdg) = 1 then if p = 1 then arl := 1 ; else arl := arl+1 ; end if; else if arl > 0 then lset := lset union {arl} ; end if; arl := 0 ; end if; end do ; if arl > 0 then lset := lset union {arl} ; end if; return (nops(lset) <= 1 ); end proc: for n from 1 to 300 do if isA164707(n) then printf("%d,",n) ; end if; end do; # R. J. Mathar, Feb 27 2010
  • Mathematica
    Select[Range@ 140, SameQ @@ Map[Length, Select[Split@ IntegerDigits[#, 2], First@ # == 1 &]] &] (* Michael De Vlieger, Aug 20 2017 *)
  • Perl
    foreach(1..140){
        %runs=();
        $runs{$}++ foreach split /0+/, sprintf("%b",$);
        print "$_, " if 1==keys(%runs);
    }
    # Ivan Neretin, Nov 09 2015

Extensions

Extended beyond 42 by R. J. Mathar, Feb 27 2010

A287170 a(n) = number of runs of consecutive prime numbers among the prime divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Rémy Sigrist, Jun 04 2017

Keywords

Comments

a(n) = 0 iff n = 1.
a(n) = 1 iff n belongs to A073491.
a(p) = 1 for any prime p.
a(A002110(n)) = 1 for any n > 0.
a(n!) = 1 for any n > 1.
a(A066205(n)) = n for any n > 0.
a(n) = a(A007947(n)) for any n > 0.
a(n) = a(A003961(n)) for any n > 0.
a(n*m) <= a(n) + a(m) for any n > 0 and m > 0.
Each number n can be uniquely represented as a product of a(n) distinct terms from A073491; this representation is minimal relative to the number of terms.

Examples

			See illustration of the first terms in the Links section.
The prime indices of 18564 are {1,1,2,4,6,7}, which separate into maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 3; this corresponds to the ordered factorization 18564 = 12 * 7 * 221. - _Gus Wiseman_, Sep 03 2022
		

Crossrefs

Positions of first appearances are A066205.
These are the row-lengths of A356226 and A356234. Other statistics are:
- length: A287170 (this sequence)
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356603 or A356232 (sorted)
A001222 counts prime factors, distinct A001221.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    Table[Length[Select[First/@If[n==1,{},FactorInteger[n]],!Divisible[n,NextPrime[#]]&]],{n,30}] (* Gus Wiseman, Sep 03 2022 *)
  • PARI
    a(n) = my (f=factor(n)); if (#f~==0, return (0), return (#f~ - sum(i=1, #f~-1, if (primepi(f[i,1])+1 == primepi(f[i+1,1]), 1, 0))))
    
  • Python
    from sympy import factorint, primepi
    def a087207(n):
        f=factorint(n)
        return sum([2**primepi(i - 1) for i in f])
    def a069010(n): return sum(1 for d in bin(n)[2:].split('0') if len(d)) # this function from Chai Wah Wu
    def a(n): return a069010(a087207(n)) # Indranil Ghosh, Jun 06 2017

Formula

a(n) = A069010(A087207(n))

A245563 Table read by rows: row n gives list of lengths of runs of 1's in binary expansion of n, starting with low-order bits.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 3, 4, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 3, 2, 3, 1, 3, 1, 3, 2, 3, 4, 1, 4, 5, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2014

Keywords

Comments

A formula for A071053(n) depends on this table.

Examples

			Here are the run lengths for the numbers 0 through 21:
0, []
1, [1]
2, [1]
3, [2]
4, [1]
5, [1, 1]
6, [2]
7, [3]
8, [1]
9, [1, 1]
10, [1, 1]
11, [2, 1]
12, [2]
13, [1, 2]
14, [3]
15, [4]
16, [1]
17, [1, 1]
18, [1, 1]
19, [2, 1]
20, [1, 1]
21, [1, 1, 1]
		

Crossrefs

Row sums = A000120 (the binary weight).
Row lengths are A069010.
The version for prime indices (instead of binary indices) is A124010.
Numbers with distinct run-lengths are A328592.
Numbers with equal run-lengths are A164707.

Programs

  • Haskell
    import Data.List (group)
    a245563 n k = a245563_tabf !! n !! k
    a245563_row n = a245563_tabf !! n
    a245563_tabf = [0] : map
       (map length . (filter ((== 1) . head)) . group) (tail a030308_tabf)
    -- Reinhard Zumkeller, Aug 10 2014
    
  • Maple
    for n from 0 to 128 do
    lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
    if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
    elif out1 = 0 and t1[i] = 1 then c:=c+1;
    elif out1 = 1 and t1[i] = 0 then c:=c;
    elif out1 = 0 and t1[i] = 0 then lis:=[op(lis),c]; out1:=1; c:=0;
    fi;
    if i = L1 and c>0 then lis:=[op(lis),c]; fi;
    od:
    lprint(n,lis);
    od:
  • Mathematica
    Join@@Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2==#1+1&],{n,0,100}] (* Gus Wiseman, Nov 03 2019 *)
  • Python
    from re import split
    A245563_list = [0]
    for n in range(1,100):
        A245563_list.extend(len(d) for d in split('0+',bin(n)[:1:-1]) if d != '')
    # Chai Wah Wu, Sep 07 2014

A121016 Numbers whose binary expansion is properly periodic.

Original entry on oeis.org

3, 7, 10, 15, 31, 36, 42, 45, 54, 63, 127, 136, 153, 170, 187, 204, 221, 238, 255, 292, 365, 438, 511, 528, 561, 594, 627, 660, 682, 693, 726, 759, 792, 825, 858, 891, 924, 957, 990, 1023, 2047, 2080, 2145, 2184, 2210, 2275, 2340, 2405, 2457, 2470, 2535
Offset: 1

Views

Author

Jacob A. Siehler, Sep 08 2006

Keywords

Comments

A finite sequence is aperiodic if its cyclic rotations are all different. - Gus Wiseman, Oct 31 2019

Examples

			For example, 204=(1100 1100)_2 and 292=(100 100 100)_2 belong to the sequence, but 30=(11110)_2 cannot be split into repeating periods.
From _Gus Wiseman_, Oct 31 2019: (Start)
The sequence of terms together with their binary expansions and binary indices begins:
   3:         11 ~ {1,2}
   7:        111 ~ {1,2,3}
   10:      1010 ~ {2,4}
   15:      1111 ~ {1,2,3,4}
   31:     11111 ~ {1,2,3,4,5}
   36:    100100 ~ {3,6}
   42:    101010 ~ {2,4,6}
   45:    101101 ~ {1,3,4,6}
   54:    110110 ~ {2,3,5,6}
   63:    111111 ~ {1,2,3,4,5,6}
  127:   1111111 ~ {1,2,3,4,5,6,7}
  136:  10001000 ~ {4,8}
  153:  10011001 ~ {1,4,5,8}
  170:  10101010 ~ {2,4,6,8}
  187:  10111011 ~ {1,2,4,5,6,8}
  204:  11001100 ~ {3,4,7,8}
  221:  11011101 ~ {1,3,4,5,7,8}
  238:  11101110 ~ {2,3,4,6,7,8}
  255:  11111111 ~ {1,2,3,4,5,6,7,8}
  292: 100100100 ~ {3,6,9}
(End)
		

Crossrefs

A020330 is a subsequence.
Numbers whose binary expansion is aperiodic are A328594.
Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose binary indices have equal run-lengths are A164707.

Programs

  • Mathematica
    PeriodicQ[n_, base_] := Block[{l = IntegerDigits[n, base]}, MemberQ[ RotateLeft[l, # ] & /@ Most@ Divisors@ Length@l, l]]; Select[ Range@2599, PeriodicQ[ #, 2] &]
  • PARI
    is(n)=n=binary(n);fordiv(#n,d,for(i=1,#n/d-1, for(j=1,d, if(n[j]!=n[j+i*d], next(3)))); return(d<#n)) \\ Charles R Greathouse IV, Dec 10 2013

A384877 Irregular triangle read by rows where row k lists the lengths of maximal anti-runs (increasing by more than 1) in the binary indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 3, 3, 1, 3, 1, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 182 are {2,3,5,6,8}, with maximal anti-runs ((2),(3,5),(6,8)) so row 182 is (1,2,2).
Triangle begins:
   0: ()
   1: (1)
   2: (1)
   3: (1,1)
   4: (1)
   5: (2)
   6: (1,1)
   7: (1,1,1)
   8: (1)
   9: (2)
  10: (2)
  11: (1,2)
  12: (1,1)
  13: (2,1)
  14: (1,1,1)
  15: (1,1,1,1)
		

Crossrefs

Row-sums are A000120.
Positions of rows of the form (1,1,...) are A023758.
Positions of first appearances of each distinct row appear to be A052499.
For runs instead of anti-runs we have A245563, reverse A245562.
Row-lengths are A384890.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length/@Split[bpe[n],#2!=#1+1&],{n,0,100}]
Previous Showing 11-20 of 110 results. Next